优先发表

优先发表栏目的论文已经同行评议并正式录用,目前处于编校和网络出版状态,其卷期、页码尚未确定,但可以根据DOI引用。本栏目内容尚未正式出版,未经许可,不得转载。
近年来,高分辨合成孔径雷达(SAR)图像的智能解译技术在城市规划、变化监测等方面得到了广泛应用。不同于光学图像,SAR图像的获取方式、图像中目标的几何结构等因素制约了现有深度学习方法对SAR图像地物目标的解译效果。该文针对高分辨SAR图像城市区域建筑物提取,提出了基于监督对比学习的正则化方法,其主要思想是增强同一类别像素在特征空间中的相似性以及不同类别像素之间的差异性,使得深度学习模型能更加关注SAR图像中建筑物与非建筑物区域在特征空间中的区别,从而提升建筑物识别精度。利用公开的大场景SpaceNet6数据集,通过对比实验,提出的正则化方法,其建筑物提取精度相比于常用的分割方法在不同网络结构下至少提升1%,分割结果证明了该文方法在实际数据上的有效性,可以对复杂场景下的城市建筑物区域进行有效分割。此外,该方法也可以拓展应用于其他SAR图像像素级别的地物分割任务中。 近年来,高分辨合成孔径雷达(SAR)图像的智能解译技术在城市规划、变化监测等方面得到了广泛应用。不同于光学图像,SAR图像的获取方式、图像中目标的几何结构等因素制约了现有深度学习方法对SAR图像地物目标的解译效果。该文针对高分辨SAR图像城市区域建筑物提取,提出了基于监督对比学习的正则化方法,其主要思想是增强同一类别像素在特征空间中的相似性以及不同类别像素之间的差异性,使得深度学习模型能更加关注SAR图像中建筑物与非建筑物区域在特征空间中的区别,从而提升建筑物识别精度。利用公开的大场景SpaceNet6数据集,通过对比实验,提出的正则化方法,其建筑物提取精度相比于常用的分割方法在不同网络结构下至少提升1%,分割结果证明了该文方法在实际数据上的有效性,可以对复杂场景下的城市建筑物区域进行有效分割。此外,该方法也可以拓展应用于其他SAR图像像素级别的地物分割任务中。
采用地球同步轨道(GEO)卫星作为双基合成孔径雷达(SAR)的发射站,可为低轨(LEO)接收站提供大范围、持续的波束覆盖。同时,由于收发分置的系统形态,LEO接收站可以实现下视、前视、后视等多视区成像,因此,GEO-LEO双基SAR在地球测绘、侦察监视等领域具有广阔的应用前景。为实现大幅宽成像,GEO SAR发射站的脉冲重复频率较低,而LEO SAR接收站会引入大的多普勒带宽,造成GEO-LEO双基SAR方位欠采样。通过在接收站引入多通道技术虽可抑制模糊,但是面临GEO-LEO双基SAR的严重欠采样问题,多通道无模糊重建方法所需通道数过多,不利于接收系统小型化。针对方位严重欠采样条件下的复杂观测场景无模糊成像问题,该文提出了序贯多帧-多接收通道联合重建无模糊成像方法,通过利用序贯观测场景多帧图像的相关性和多接收通道的采样信息进行联合重建,实现无模糊成像。首先将GEO-LEO双基SAR无模糊成像问题建模为张量联合低秩与稀疏优化问题,然后在交替方向乘子法迭代求解中利用多接收通道信息,实现了GEO-LEO双基SAR对复杂观测场景的无模糊成像。相比于基于传统多通道重构的成像方法,该方法可显著减少无模糊成像所需的接收通道数,仿真实验验证了该方法的有效性。 采用地球同步轨道(GEO)卫星作为双基合成孔径雷达(SAR)的发射站,可为低轨(LEO)接收站提供大范围、持续的波束覆盖。同时,由于收发分置的系统形态,LEO接收站可以实现下视、前视、后视等多视区成像,因此,GEO-LEO双基SAR在地球测绘、侦察监视等领域具有广阔的应用前景。为实现大幅宽成像,GEO SAR发射站的脉冲重复频率较低,而LEO SAR接收站会引入大的多普勒带宽,造成GEO-LEO双基SAR方位欠采样。通过在接收站引入多通道技术虽可抑制模糊,但是面临GEO-LEO双基SAR的严重欠采样问题,多通道无模糊重建方法所需通道数过多,不利于接收系统小型化。针对方位严重欠采样条件下的复杂观测场景无模糊成像问题,该文提出了序贯多帧-多接收通道联合重建无模糊成像方法,通过利用序贯观测场景多帧图像的相关性和多接收通道的采样信息进行联合重建,实现无模糊成像。首先将GEO-LEO双基SAR无模糊成像问题建模为张量联合低秩与稀疏优化问题,然后在交替方向乘子法迭代求解中利用多接收通道信息,实现了GEO-LEO双基SAR对复杂观测场景的无模糊成像。相比于基于传统多通道重构的成像方法,该方法可显著减少无模糊成像所需的接收通道数,仿真实验验证了该方法的有效性。
为了滤除极化-多普勒气象雷达中的射频干扰,该文提出利用谱极化滤波器,适用于同时发射同时接收(STSR)和分时发射同时接收(ATSR)体制的极化气象雷达。首先利用C波段STSR气象雷达的实测数据研究射频干扰的时域、频域和极化域特性,建立射频干扰信号模型。然后,在X波段ATSR雷达的数据中仿真加入射频干扰,验证谱极化滤波器的有效性。总体看来,在ATSR雷达中利用谱极化滤波器可以有效保留降雨目标并且滤除射频干扰。最后,针对STSR雷达提出利用数据分集的方法,STSR雷达的实测数据可以模拟ATSR雷达数据,再利用谱极化滤波器实现射频干扰滤除,同样可以取得较好的滤波效果。 为了滤除极化-多普勒气象雷达中的射频干扰,该文提出利用谱极化滤波器,适用于同时发射同时接收(STSR)和分时发射同时接收(ATSR)体制的极化气象雷达。首先利用C波段STSR气象雷达的实测数据研究射频干扰的时域、频域和极化域特性,建立射频干扰信号模型。然后,在X波段ATSR雷达的数据中仿真加入射频干扰,验证谱极化滤波器的有效性。总体看来,在ATSR雷达中利用谱极化滤波器可以有效保留降雨目标并且滤除射频干扰。最后,针对STSR雷达提出利用数据分集的方法,STSR雷达的实测数据可以模拟ATSR雷达数据,再利用谱极化滤波器实现射频干扰滤除,同样可以取得较好的滤波效果。
“合成孔径雷达微波视觉三维成像”,从概念上说,旨在将“视觉语义”引入到合成孔径雷达的成像模型中,以期提高三维成像的质量。对层析合成孔径雷达(TomoSAR)来说, “视觉语义”的引入可望有效减少TomoSAR所需的观测次数。然而,什么是“视觉语义”?从视觉感知的途径看, “单眼”和“双眼”均可以从场景感知三维结构信息;从场景内容看,不同的人对同一幅图像会有不同感受;从视觉神经加工机理看,三维信息加工和二维信息加工也存在一些本质差异。另外,人类视觉感知普遍存在错觉(illusion)现象。那么,到底什么类型的“视觉语义信息”可望在计算的层次上有助于微波三维成像呢?如何借鉴计算机视觉的理论和方法来提取微波三维成像中有用的“视觉语义”信息呢?该文对这些问题进行了一些初步探讨。 “合成孔径雷达微波视觉三维成像”,从概念上说,旨在将“视觉语义”引入到合成孔径雷达的成像模型中,以期提高三维成像的质量。对层析合成孔径雷达(TomoSAR)来说, “视觉语义”的引入可望有效减少TomoSAR所需的观测次数。然而,什么是“视觉语义”?从视觉感知的途径看, “单眼”和“双眼”均可以从场景感知三维结构信息;从场景内容看,不同的人对同一幅图像会有不同感受;从视觉神经加工机理看,三维信息加工和二维信息加工也存在一些本质差异。另外,人类视觉感知普遍存在错觉(illusion)现象。那么,到底什么类型的“视觉语义信息”可望在计算的层次上有助于微波三维成像呢?如何借鉴计算机视觉的理论和方法来提取微波三维成像中有用的“视觉语义”信息呢?该文对这些问题进行了一些初步探讨。
全球定位导航系统(GNSS)作为一种覆盖广泛的稳定信号源,对于微动目标特性识别具有相当大的实用价值。针对外辐射源旋翼目标识别问题,该文提出基于相位补偿的旋翼特征提取新思路。通过分析旋翼目标时频域内闪烁分布的数学形成机理,提出利用相位补偿的方法将相同叶片的闪烁聚焦到特定多普勒频率,进而估计旋翼的叶片数。然后依据闪烁中心频率距离基准频率最近的原则从参数矩阵中估计叶片转速等参数,并利用闪烁占据的带宽计算叶片的长度。最后仿真实验结果验证该方法对参数空间设置的适用性更强,估计精度也更高,并且可以在回波域实现旋翼目标的叶片分离。 全球定位导航系统(GNSS)作为一种覆盖广泛的稳定信号源,对于微动目标特性识别具有相当大的实用价值。针对外辐射源旋翼目标识别问题,该文提出基于相位补偿的旋翼特征提取新思路。通过分析旋翼目标时频域内闪烁分布的数学形成机理,提出利用相位补偿的方法将相同叶片的闪烁聚焦到特定多普勒频率,进而估计旋翼的叶片数。然后依据闪烁中心频率距离基准频率最近的原则从参数矩阵中估计叶片转速等参数,并利用闪烁占据的带宽计算叶片的长度。最后仿真实验结果验证该方法对参数空间设置的适用性更强,估计精度也更高,并且可以在回波域实现旋翼目标的叶片分离。
微动目标因具有在不同方向的运动分量,能够对电磁波进行微多普勒调制,导致目标成像特征出现方位向散焦效应,这种现象在目标识别与反识别领域被广泛关注与研究。相较而言,电控时变电磁材料通过外加激励实现对电磁波特征的灵活调控,具有更快的调制速度,而其成像特性没有被过多关注。该文以此为切入点,对电控时变电磁材料的合成孔径雷达(SAR)图像距离向调制特性进行了研究,分析了时变电磁材料谱变换模型和SAR目标特征控制原理。以相位调制表面(PSS)为代表,建立了非周期PSS相位调制模型,其频谱具有连续频移特性。在此基础上,探讨了PSS连续频移调制对SAR的影响,揭露了距离向目标散焦现象。通过SAR实测数据仿真,验证了所提理论方法的有效性。 微动目标因具有在不同方向的运动分量,能够对电磁波进行微多普勒调制,导致目标成像特征出现方位向散焦效应,这种现象在目标识别与反识别领域被广泛关注与研究。相较而言,电控时变电磁材料通过外加激励实现对电磁波特征的灵活调控,具有更快的调制速度,而其成像特性没有被过多关注。该文以此为切入点,对电控时变电磁材料的合成孔径雷达(SAR)图像距离向调制特性进行了研究,分析了时变电磁材料谱变换模型和SAR目标特征控制原理。以相位调制表面(PSS)为代表,建立了非周期PSS相位调制模型,其频谱具有连续频移特性。在此基础上,探讨了PSS连续频移调制对SAR的影响,揭露了距离向目标散焦现象。通过SAR实测数据仿真,验证了所提理论方法的有效性。
在合成孔径雷达遥感图像中,舰船由金属材质构成,后向散射强;海面平滑,后向散射弱,因此舰船是海面背景下的视觉显著目标。然而,SAR遥感影像幅宽大、海面背景复杂,且不同舰船目标特征差异大,导致舰船快速准确检测困难。为此,该文提出一种基于视觉显著性的SAR遥感图像NanoDet舰船检测方法。该方法首先通过自动聚类算法划分图像样本为不同场景类别;其次,针对不同场景下的图像进行差异化的显著性检测;最后,使用优化后的轻量化网络模型NanoDet对加入显著性图的训练样本进行特征学习,使系统模型能够实现快速和高精确度的舰船检测效果。该方法对SAR图像应用实时性具有一定的帮助,且其轻量化模型利于未来实现硬件移植。该文利用公开数据集SSDD和AIR-SARship-2.0进行实验验证,体现了该算法的有效性。 在合成孔径雷达遥感图像中,舰船由金属材质构成,后向散射强;海面平滑,后向散射弱,因此舰船是海面背景下的视觉显著目标。然而,SAR遥感影像幅宽大、海面背景复杂,且不同舰船目标特征差异大,导致舰船快速准确检测困难。为此,该文提出一种基于视觉显著性的SAR遥感图像NanoDet舰船检测方法。该方法首先通过自动聚类算法划分图像样本为不同场景类别;其次,针对不同场景下的图像进行差异化的显著性检测;最后,使用优化后的轻量化网络模型NanoDet对加入显著性图的训练样本进行特征学习,使系统模型能够实现快速和高精确度的舰船检测效果。该方法对SAR图像应用实时性具有一定的帮助,且其轻量化模型利于未来实现硬件移植。该文利用公开数据集SSDD和AIR-SARship-2.0进行实验验证,体现了该算法的有效性。
低过采样Staggered SAR利用变脉冲重复间隔技术有效分散盲区,可实现连续观测的高分宽幅成像,同时采用低过采样率可降低系统对数据存储的要求,因此具有重要的研究价值。然而,低过采样Staggered SAR存在的非均匀采样、回波丢失和非理想方位天线方向图(AAP)问题会导致成像结果中出现严重的方位模糊。该文提出了一种基于压缩感知的成像方法,可解决已有方法模糊抑制性能差和效率低的问题。首先,建立了准确描述低过采样Staggered SAR非均匀采样、回波丢失和距离徙动的创新性频域模型(IFDM),利用二维快速迭代收缩阈值算法对基于该IFDM构造的优化问题进行迭代求解可抑制非均匀采样和回波丢失造成的方位模糊;然后,利用选择滤波方法处理迭代结果可抑制非理想AAP造成的方位模糊。实验结果表明该文方法在成像性能和效率上均优于已有方法。 低过采样Staggered SAR利用变脉冲重复间隔技术有效分散盲区,可实现连续观测的高分宽幅成像,同时采用低过采样率可降低系统对数据存储的要求,因此具有重要的研究价值。然而,低过采样Staggered SAR存在的非均匀采样、回波丢失和非理想方位天线方向图(AAP)问题会导致成像结果中出现严重的方位模糊。该文提出了一种基于压缩感知的成像方法,可解决已有方法模糊抑制性能差和效率低的问题。首先,建立了准确描述低过采样Staggered SAR非均匀采样、回波丢失和距离徙动的创新性频域模型(IFDM),利用二维快速迭代收缩阈值算法对基于该IFDM构造的优化问题进行迭代求解可抑制非均匀采样和回波丢失造成的方位模糊;然后,利用选择滤波方法处理迭代结果可抑制非理想AAP造成的方位模糊。实验结果表明该文方法在成像性能和效率上均优于已有方法。
层析合成孔径雷达(TomoSAR)通过组合在不同高度上获取的多基线二维SAR数据,实现合成孔径雷达的三维成像。TomoSAR的求解本质是一维谱估计问题,基于压缩感知的方法可以在非均匀分布的少量基线观测下实现求解,逐渐成为了主流的成像方式。在经典的压缩感知算法流程中,需要将连续的高程向划分成固定的网格,并且假定目标正好位于所划分的网格上。然而该假设通常难以成立,从而引起“基失配”问题,目前该问题在TomoSAR中很少被讨论。该文首先讨论了目标不在网格(Off-grid)上的TomoSAR观测模型,提出了采用加性扰动项来修正目标偏离网格所带来影响的求解模型。在此基础之上,引入局部优化算法与\begin{document}$ {L}_{1} $\end{document}范数最小化结合的方法,求解所提出的Off-grid TomoSAR模型。最后,利用仿真数据和机载阵列干涉SAR实际飞行数据进行了验证,结果表明,对于Off-grid目标,该方法能够得到比基于\begin{document}$ {L}_{1} $\end{document}范数最小化的经典方法更准确的位置、幅度和相位求解结果,证明了方法的优越性。 层析合成孔径雷达(TomoSAR)通过组合在不同高度上获取的多基线二维SAR数据,实现合成孔径雷达的三维成像。TomoSAR的求解本质是一维谱估计问题,基于压缩感知的方法可以在非均匀分布的少量基线观测下实现求解,逐渐成为了主流的成像方式。在经典的压缩感知算法流程中,需要将连续的高程向划分成固定的网格,并且假定目标正好位于所划分的网格上。然而该假设通常难以成立,从而引起“基失配”问题,目前该问题在TomoSAR中很少被讨论。该文首先讨论了目标不在网格(Off-grid)上的TomoSAR观测模型,提出了采用加性扰动项来修正目标偏离网格所带来影响的求解模型。在此基础之上,引入局部优化算法与\begin{document}$ {L}_{1} $\end{document}范数最小化结合的方法,求解所提出的Off-grid TomoSAR模型。最后,利用仿真数据和机载阵列干涉SAR实际飞行数据进行了验证,结果表明,对于Off-grid目标,该方法能够得到比基于\begin{document}$ {L}_{1} $\end{document}范数最小化的经典方法更准确的位置、幅度和相位求解结果,证明了方法的优越性。
传统合成孔径雷达(SAR)只能获取方位-距离二维图像,无法准确反映目标的三维散射结构信息。层析合成孔径雷达(TomoSAR)是一种多基线干涉测量模式,它将合成孔径原理扩展至高程向,除了可对目标进行二维成像之外,还可以准确恢复目标的高度向散射信息,真正实现三维成像。差分层析合成孔径雷达(D-TomoSAR)将合成孔径原理延伸至高程和时间方向,不仅可以获得目标的三维散射结构,还可以高精度获取观测目标的形变速率,实现对目标形变的有效监测。高分三号是我国首颗1 m分辨率C频段多极化SAR卫星。它具有高分辨率、大成像幅宽、多成像模式等特点,对我国高分对地观测技术的发展具有重要意义。目前高分三号数据主要应用于目标识别等图像处理领域,没有充分利用SAR图像的相位信息。而且,由于设计之初未考虑后续高维成像应用,现有高分三号获取的SAR图像存在有一定的空间、时间去相干问题,对应用于后续干涉系列处理产生了一定影响。为解决上述问题,该文基于7景高分三号SAR复图像,开展了对北京雁栖湖周围建筑的三维、四维层析成像研究,在获取了建筑物三维散射结构信息的同时,实现了对建筑物形变的毫米级高精度监测。该初步实验结果证明了高分三号SAR数据的应用潜力,为后续进一步扩展高分三号SAR卫星在城市感知与监测中的应用提供了技术支撑。 传统合成孔径雷达(SAR)只能获取方位-距离二维图像,无法准确反映目标的三维散射结构信息。层析合成孔径雷达(TomoSAR)是一种多基线干涉测量模式,它将合成孔径原理扩展至高程向,除了可对目标进行二维成像之外,还可以准确恢复目标的高度向散射信息,真正实现三维成像。差分层析合成孔径雷达(D-TomoSAR)将合成孔径原理延伸至高程和时间方向,不仅可以获得目标的三维散射结构,还可以高精度获取观测目标的形变速率,实现对目标形变的有效监测。高分三号是我国首颗1 m分辨率C频段多极化SAR卫星。它具有高分辨率、大成像幅宽、多成像模式等特点,对我国高分对地观测技术的发展具有重要意义。目前高分三号数据主要应用于目标识别等图像处理领域,没有充分利用SAR图像的相位信息。而且,由于设计之初未考虑后续高维成像应用,现有高分三号获取的SAR图像存在有一定的空间、时间去相干问题,对应用于后续干涉系列处理产生了一定影响。为解决上述问题,该文基于7景高分三号SAR复图像,开展了对北京雁栖湖周围建筑的三维、四维层析成像研究,在获取了建筑物三维散射结构信息的同时,实现了对建筑物形变的毫米级高精度监测。该初步实验结果证明了高分三号SAR数据的应用潜力,为后续进一步扩展高分三号SAR卫星在城市感知与监测中的应用提供了技术支撑。
传统相干雷达信号处理流程中先脉冲压缩再相参处理的级联处理在理论上无法实现对高速目标回波能量的最大化积累,级联处理的输出结果中目标峰值位置存在偏差,甚至还伴随主瓣展宽、增益下降、旁瓣增高的问题。为此该文提出一种联合脉压与Radon傅里叶变换(PC-RFT)的长时间相参积累方法,利用信号之间的相关关系将匹配滤波与Radon傅里叶变换相结合,在快时间(脉内时间)与慢时间(脉间时间)维度上同时补偿脉内和脉间的多普勒频移,从而实现目标增益的最大化。实验表明二维联合处理的性能明显优于级联处理。 传统相干雷达信号处理流程中先脉冲压缩再相参处理的级联处理在理论上无法实现对高速目标回波能量的最大化积累,级联处理的输出结果中目标峰值位置存在偏差,甚至还伴随主瓣展宽、增益下降、旁瓣增高的问题。为此该文提出一种联合脉压与Radon傅里叶变换(PC-RFT)的长时间相参积累方法,利用信号之间的相关关系将匹配滤波与Radon傅里叶变换相结合,在快时间(脉内时间)与慢时间(脉间时间)维度上同时补偿脉内和脉间的多普勒频移,从而实现目标增益的最大化。实验表明二维联合处理的性能明显优于级联处理。
1比特量化技术在大规模MIMO雷达系统中的应用使得系统成本、功耗及传输带宽显著降低。但这同时也对如何从1比特量化后的数据中提取目标高精度信息提出了严峻挑战。针对基于1比特量化的二次定位算法在低信噪比下定位精度低、鲁棒性差的问题,该文提出了一种基于1比特量化的大规模MIMO雷达系统目标直接定位算法。首先,通过将接收信号进行1比特量化,并推导基于1比特信号的概率分布,建立了关于目标位置的代价函数;其次,通过证明代价函数的凸性,利用梯度下降算法求解了回波中未知的信号参数;最后,根据最大似然估计实现了目标直接定位。仿真实验分析了所提算法的定位性能,结果表明,所提算法仅需传输相较于高精度采样(16比特为例)直接定位算法6.25%的通信带宽,同时其功耗仅为前者的0.1%。此外,与基于1比特量化的二次定位算法相比,所提算法在低信噪比下便可实现对目标位置的有效估计,并且其定位性能在低信噪比和低MIMO天线数量下均明显优于前者。同时,其性能会随着过采样技术的应用进一步提升。 1比特量化技术在大规模MIMO雷达系统中的应用使得系统成本、功耗及传输带宽显著降低。但这同时也对如何从1比特量化后的数据中提取目标高精度信息提出了严峻挑战。针对基于1比特量化的二次定位算法在低信噪比下定位精度低、鲁棒性差的问题,该文提出了一种基于1比特量化的大规模MIMO雷达系统目标直接定位算法。首先,通过将接收信号进行1比特量化,并推导基于1比特信号的概率分布,建立了关于目标位置的代价函数;其次,通过证明代价函数的凸性,利用梯度下降算法求解了回波中未知的信号参数;最后,根据最大似然估计实现了目标直接定位。仿真实验分析了所提算法的定位性能,结果表明,所提算法仅需传输相较于高精度采样(16比特为例)直接定位算法6.25%的通信带宽,同时其功耗仅为前者的0.1%。此外,与基于1比特量化的二次定位算法相比,所提算法在低信噪比下便可实现对目标位置的有效估计,并且其定位性能在低信噪比和低MIMO天线数量下均明显优于前者。同时,其性能会随着过采样技术的应用进一步提升。
无源定位技术是现代电子战领域中重要的组成部分,然而现有的对抗无源定位系统采用的射频隐身、电子干扰等传统方法仍存在着很大的局限性。该文提出将频控阵技术应用到无源定位对抗领域,频控阵独特的波束扫描特性使得主波束在同一方位角度位置处的波束驻留时间缩短,无源定位系统无法长时间截获频控阵信号。另一方面,频控阵信号的时变特性使得无源定位系统接收信号信噪比大大降低,因此能有效地增加无源定位系统的定位误差,降低其定位效能。搭载有频控阵辐射源的电子系统在利用自身辐射信号对外部环境进行感知的同时,又能阻止敌方的无源定位系统对其实施定位侦察。理论分析和仿真验证均证实了频控阵辐射源针对干涉仪测向与时频差定位两种无源定位方法具备优良的对抗性能,该文的仿真实例显示采用频控阵辐射源时其探测精度明显降低,从而为研究同时具备主动探测和无源定位对抗能力的新一代电子系统提供了新的技术思路。 无源定位技术是现代电子战领域中重要的组成部分,然而现有的对抗无源定位系统采用的射频隐身、电子干扰等传统方法仍存在着很大的局限性。该文提出将频控阵技术应用到无源定位对抗领域,频控阵独特的波束扫描特性使得主波束在同一方位角度位置处的波束驻留时间缩短,无源定位系统无法长时间截获频控阵信号。另一方面,频控阵信号的时变特性使得无源定位系统接收信号信噪比大大降低,因此能有效地增加无源定位系统的定位误差,降低其定位效能。搭载有频控阵辐射源的电子系统在利用自身辐射信号对外部环境进行感知的同时,又能阻止敌方的无源定位系统对其实施定位侦察。理论分析和仿真验证均证实了频控阵辐射源针对干涉仪测向与时频差定位两种无源定位方法具备优良的对抗性能,该文的仿真实例显示采用频控阵辐射源时其探测精度明显降低,从而为研究同时具备主动探测和无源定位对抗能力的新一代电子系统提供了新的技术思路。
该文针对传统全极化高分辨一维距离像(HRRP)雷达目标识别问题,提出了结合Cameron分解和融合简化核极限学习机(RKELM)的目标识别方法,旨在提高全极化HRRP目标识别性能。在特征提取阶段,所提方法利用Cameron分解定义了目标在各个标准散射体上的投影分量。通过分析,将目标在三面角、二面角和1/4波长器件这3个散射基上沿距离维的投影分量作为目标特征,实现对目标散射特性更加精细化的描述。在分类阶段,考虑到RKELM算法识别性能的不稳定性,提出了一种基于原型聚类预处理的RKELM方法,并在此基础上设计了特征级融合RKELM网络和决策级融合RKELM网络,以对投影特征进行融合分类。实验部分利用10类民用车辆的全极化HRRP数据将所提识别方法和现有方法进行了对比,结果表明:(1)所采用的Cameron分解投影特征表现出了较高的可分性和噪声稳健性;(2)当训练样本数较多时,特征级融合RKELM算法的泛化性能较好;当训练样本数较少时,决策级融合RKELM的泛化性能较好。 该文针对传统全极化高分辨一维距离像(HRRP)雷达目标识别问题,提出了结合Cameron分解和融合简化核极限学习机(RKELM)的目标识别方法,旨在提高全极化HRRP目标识别性能。在特征提取阶段,所提方法利用Cameron分解定义了目标在各个标准散射体上的投影分量。通过分析,将目标在三面角、二面角和1/4波长器件这3个散射基上沿距离维的投影分量作为目标特征,实现对目标散射特性更加精细化的描述。在分类阶段,考虑到RKELM算法识别性能的不稳定性,提出了一种基于原型聚类预处理的RKELM方法,并在此基础上设计了特征级融合RKELM网络和决策级融合RKELM网络,以对投影特征进行融合分类。实验部分利用10类民用车辆的全极化HRRP数据将所提识别方法和现有方法进行了对比,结果表明:(1)所采用的Cameron分解投影特征表现出了较高的可分性和噪声稳健性;(2)当训练样本数较多时,特征级融合RKELM算法的泛化性能较好;当训练样本数较少时,决策级融合RKELM的泛化性能较好。
频率分集阵列(FDA)雷达通过在不同发射阵元间引入微小的载频增量,实现发射方向图在脉冲持续时间内对大尺度空域的均匀连续扫描。然而FDA雷达方向图主瓣的扫描特性,使得其在一个方位角度位置的波束驻留时间缩短,积累带宽减小,从而降低其距离分辨率。针对上述问题该文提出了一种空时域联合的FDA雷达波形设计方法,通过引入阵元间的空域相位编码显著改善了相干FDA雷达的距离分辨率,同时在时域设计一种非线性调频波形获得了更低的距离旁瓣。该文从理论上分析了该方法的有效性,并通过仿真实验证明了该波形设计方法同时具有距离向高分辨和低峰值旁瓣比的优势,具有更好的一维距离向成像性能,并分析了其对高速运动目标的观测能力。 频率分集阵列(FDA)雷达通过在不同发射阵元间引入微小的载频增量,实现发射方向图在脉冲持续时间内对大尺度空域的均匀连续扫描。然而FDA雷达方向图主瓣的扫描特性,使得其在一个方位角度位置的波束驻留时间缩短,积累带宽减小,从而降低其距离分辨率。针对上述问题该文提出了一种空时域联合的FDA雷达波形设计方法,通过引入阵元间的空域相位编码显著改善了相干FDA雷达的距离分辨率,同时在时域设计一种非线性调频波形获得了更低的距离旁瓣。该文从理论上分析了该方法的有效性,并通过仿真实验证明了该波形设计方法同时具有距离向高分辨和低峰值旁瓣比的优势,具有更好的一维距离向成像性能,并分析了其对高速运动目标的观测能力。
合成孔径雷达(SAR)的自动目标识别(ATR)技术目前已广泛应用于军事和民用领域。SAR图像对成像的方位角极其敏感,同一目标在不同方位角下的SAR图像存在一定差异,而多方位角的SAR图像序列蕴含着更加丰富的分类识别信息。因此,该文提出一种基于EfficientNet和BiGRU的多角度SAR目标识别模型,并使用孤岛损失来训练模型。该方法在MSTAR数据集10类目标识别任务中可以达到100%的识别准确率,对大俯仰角(擦地角)下成像、存在版本变体、存在配置变体的3种特殊情况下的SAR目标分别达到了99.68%, 99.95%, 99.91%的识别准确率。此外,该方法在小规模的数据集上也能达到令人满意的识别准确率。实验结果表明,该方法在MSTAR的大部分数据集上识别准确率均优于其他多角度SAR目标识别方法,且具有一定的鲁棒性。 合成孔径雷达(SAR)的自动目标识别(ATR)技术目前已广泛应用于军事和民用领域。SAR图像对成像的方位角极其敏感,同一目标在不同方位角下的SAR图像存在一定差异,而多方位角的SAR图像序列蕴含着更加丰富的分类识别信息。因此,该文提出一种基于EfficientNet和BiGRU的多角度SAR目标识别模型,并使用孤岛损失来训练模型。该方法在MSTAR数据集10类目标识别任务中可以达到100%的识别准确率,对大俯仰角(擦地角)下成像、存在版本变体、存在配置变体的3种特殊情况下的SAR目标分别达到了99.68%, 99.95%, 99.91%的识别准确率。此外,该方法在小规模的数据集上也能达到令人满意的识别准确率。实验结果表明,该方法在MSTAR的大部分数据集上识别准确率均优于其他多角度SAR目标识别方法,且具有一定的鲁棒性。