基于稀疏贝叶斯学习的太赫兹电磁涡旋三维成像方法

蒋彦雯 范红旗 李双勋

蒋彦雯, 范红旗, 李双勋. 基于稀疏贝叶斯学习的太赫兹电磁涡旋三维成像方法[J]. 雷达学报, 2021, 10(5): 718–724. doi: 10.12000/JR21151
引用本文: 蒋彦雯, 范红旗, 李双勋. 基于稀疏贝叶斯学习的太赫兹电磁涡旋三维成像方法[J]. 雷达学报, 2021, 10(5): 718–724. doi: 10.12000/JR21151
JIANG Yanwen, FAN Hongqi, and LI Shuangxun. A sparse Bayesian learning approach for vortex electromagnetic wave three-dimensional imaging in the Terahertz band[J]. Journal of Radars, 2021, 10(5): 718–724. doi: 10.12000/JR21151
Citation: JIANG Yanwen, FAN Hongqi, and LI Shuangxun. A sparse Bayesian learning approach for vortex electromagnetic wave three-dimensional imaging in the Terahertz band[J]. Journal of Radars, 2021, 10(5): 718–724. doi: 10.12000/JR21151

基于稀疏贝叶斯学习的太赫兹电磁涡旋三维成像方法

doi: 10.12000/JR21151
基金项目: 国家自然科学基金(61871386, 62171446)
详细信息
    作者简介:

    蒋彦雯,女,国防科技大学电子科学学院讲师,从事阵列雷达成像与信号处理研究

    范红旗,男,国防科技大学电子科学学院研究员,从事雷达目标检测与信息融合等研究

    李双勋,男,国防科技大学电子科学学院副研究员,从事雷达目标探测等研究

    通讯作者:

    蒋彦雯 j1991yuwen@163.com

  • 责任主编:郭忠义 Corresponding Editor: GUO Zhongyi
  • 中图分类号: TN95

A Sparse Bayesian Learning Approach for Vortex Electromagnetic Wave Three-dimensional Imaging in the Terahertz Band

Funds: The National Natural Science Foundation of China (61871386, 62171446)
More Information
  • 摘要: 在逆合成孔径雷达(ISAR)成像体制下,当太赫兹雷达发射带宽信号且波形为涡旋电磁波时,利用涡旋电磁波形成的差异性辐射场和雷达与目标相对运动形成的合成孔径,通过方位俯仰的信息解耦最终可实现目标高分辨三维成像。因此,该文建立了基于电磁涡旋ISAR的目标三维成像模型,提出了一种基于稀疏贝叶斯学习(SBL)的图像重建方法和分区域幅度阈值设置方法,极大地简化了成像过程,减少了计算量。仿真结果表明,相比传统的基于快速傅里叶变换的成像方法,该文提出的SBL方法可以获得更高的成像分辨率,且重构性能随信噪比的增大而提升。

     

  • 图  1  基于电磁涡旋ISAR的三维成像几何

    Figure  1.  Sketch map of the 3D imaging geometry based on electromagnetic vortex ISAR

    图  2  基于SBL方法的三维成像几何

    Figure  2.  3D imaging geometry based on the SBL method

    图  3  目标散射点分布

    Figure  3.  The distribution of point targets

    图  4  l =0时距离-方位切片及不同幅度阈值划分结果

    Figure  4.  The range-azimuth image at l =0 and the results of different amplitude threshold setting method

    图  5  基于SBL方法的三维成像结果

    Figure  5.  3D imaging results based on SBL method

    图  6  目标散射点分布及其成像结果对比

    Figure  6.  The distribution of targets and comparison of imaging results

    图  7  重构散射系数MSE随信噪比变化情况

    Figure  7.  MSE of reconstructed scattering coefficient as a function of the SNR

  • [1] LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [2] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
    [3] SHEN Fei, MU Jiangnan, GUO Kai, et al. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5763–5771. doi: 10.1109/TAP.2019.2922545
    [4] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [5] BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves High-Resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980
    [6] LIU Kang, LIU Hongyan, SHA W E I, et al. Backward scattering of electrically large standard objects illuminated by OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1167–1171. doi: 10.1109/LAWP.2020.2993687
    [7] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    [8] YANG Taoli, LI Shihua, XU Ou, et al. Three dimensional SAR imaging based on vortex electromagnetic waves[J]. Remote Sensing Letters, 2018, 9(4): 343–352. doi: 10.1080/2150704X.2017.1421791
    [9] JIANG Yanwen, LIU Kang, WANG Hongqiang, et al. Orbital-angular-momentum-based ISAR imaging at terahertz frequencies[J]. IEEE Sensors Journal, 2018, 18(22): 9230–9235. doi: 10.1109/JSEN.2018.2869047
    [10] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Technology of Radar Imaging[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [11] GUI Shuliang, LI Jin, and PI Yiming. Security imaging for multi-target screening based on adaptive scene segmentation with terahertz radar[J]. IEEE Sensors Journal, 2019, 19(7): 2675–2684. doi: 10.1109/JSEN.2018.2889884
    [12] JIANG Yanwen, WANG Hongqiang, QIN Yuliang, et al. A three-dimensional surface imaging method using THz dual-frequency interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1651–1655. doi: 10.1109/LGRS.2016.2600570
    [13] SHEEN D M, MCMAKIN D L, and HALL T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1581–1592. doi: 10.1109/22.942570
    [14] CARIS M, STANKO S, PALM S, et al. 300 GHz radar for high resolution SAR and ISAR applications[C]. 2015 16th International Radar Symposium, Dresden, Germany, 2015: 577–580. doi: 10.1109/IRS.2015.7226313.
    [15] WIPF D P and RAO B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153–2164. doi: 10.1109/TSP.2004.831016
    [16] DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920
    [17] 蒋彦雯. 太赫兹阵列雷达三维成像技术研究[D]. [博士论文], 国防科技大学, 2018.

    JIANG Yanwen. Study on the 3D imaging technology for terahertz array radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2018.
    [18] SEEGER M W and WIPF D P. Variational Bayesian inference techniques[J]. IEEE Signal Processing Magazine, 2010, 27(6): 81–91. doi: 10.1109/MSP.2010.938082
    [19] GONZALEZ R C, WOODS R E, EDDINS S L. 阮秋琦, 阮宇智, 译. 数字图像处理[M]. 3版. 北京: 电子工业出版社, 2020.

    GONZALEZ R C, WOODS R E, EDDINS S L. RUAN Qiuqi, RUAN Yuzhi, translation. Digital Image Processing[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2020.
  • 加载中
图(7)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  135
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-16
  • 修回日期:  2021-10-25
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回