A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering

YASIR Saifullah YANG Guomin XU Feng

YASIR Saifullah, 杨国敏, 徐丰. 四叶草形超宽带漫散射编码超表面[J]. 雷达学报, 2021, 10(3): 382–390. DOI: 10.12000/JR21061
引用本文: YASIR Saifullah, 杨国敏, 徐丰. 四叶草形超宽带漫散射编码超表面[J]. 雷达学报, 2021, 10(3): 382–390. DOI: 10.12000/JR21061
YASIR Saifullah, YANG Guomin, and XU Feng. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 2021, 10(3): 382–390. DOI: 10.12000/JR21061
Citation: YASIR Saifullah, YANG Guomin, and XU Feng. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 2021, 10(3): 382–390. DOI: 10.12000/JR21061

A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering

doi: 10.12000/JR21061
Funds: The National Key Research and Development Program of China (2017YFA0100203)
More Information
    Author Bio:

    YASIR Saifullah (1989–) is currently pursuing his Ph.D. degree with the School of Information Science and Technology, Fudan University. His research interests include microwave, metamaterial, coding, dielectric and programmable metasurfaces

    YANG Guomin (1979–) received the B.S. degree (Hons.) in communication engineering from the Xi’an University of Technology, Xi’an, China, in 2002, the M.S. degree in electronic engineering from Shanghai Jiao Tong University, Shanghai, China, in 2006, and the Ph.D. degree in electrical and computer engineering from Northeastern University, Boston, MA, USA, in 2010. In 2010, he joined the Faculty of the School of Information and Technology, Fudan University, Shanghai, China, where he is currently Professor. He has authored 58 journal publications and 58 conference papers. His research interests include antenna miniaturization, magnetodielectric materials, intelligent metamaterials, frequency-selective surfaces, microwave wireless power transfer, RF energy harvesting, and inverse scattering problems in electromagnetics

    XU Feng (1982–) received the B.E. degree (Hons.) in information engineering from Southeast University, Nanjing, China, in 2003, and the Ph.D. degree (Hons.) in electronic engineering from Fudan University, Shanghai, China, in 2008. From 2008 to 2010, he was a Post-Doctoral Fellow with the National Oceanic and Atmospheric Administration (NOAA) Center for Satellite Applications and Research, Camp Springs, MD, USA. From 2010 to 2013, he worked with Intelligent Automation Inc., Rockville, MD, USA, and NASA Goddard Space Flight Center, Greenbelt, MD, USA, as a Research Scientist. In 2012, he was selected for China’s Global Experts Recruitment Program and subsequently returned to Fudan University, in 2013, where he is a Professor. His research interests include electromagnetic scattering modeling, SAR information retrieval, and radar system development. Dr. Xu was a recipient of the second-class National Nature Science Award of China in 2011, the 2014 Early Career Award of the IEEE Geoscience and Remote Sensing Society, and the 2007 SUMMA Graduate Fellowship in the advanced electromagnetics area

    Corresponding author: YANG Guomin. E-mail: guominyang@fudan.edu.cn
  • 摘要: 该文提出了一种结构新颖的四叶草形编码超表面,并利用该超表面实现了超宽带漫散射。所提出的编码超表面具有旋转对称性,它对x极化和y极化波产生相似的反射特性。为了实现1比特编码超表面,该文设计了在15.5~40.5 GHz的频率范围内且相位差为180°±37°的两个超表面单元。采用优化算法得到阵列中单元的最佳排列,从而实现了宽带RCS的缩减。四叶草形编码超表面可以在15.5~26.5 GHz和30.5~40.5 GHz这两个频带内实现10 dB的RCS缩减。该文加工了该编码超表面并与仿真结果进行了比较,从而有效验证了所设计的四叶草形编码超表面可以在宽频带内实现RCS的缩减。


  • Figure  1.  The schematic of proposed unit cell

    Figure  2.  Simulation results of reflection phase and magnitude

    Figure  3.  Flow chart of water cycle algorithm

    Figure  4.  Simulation results of the four-leaf clover-based coding metasurface

    Figure  5.  Convergence characteristics of proposed WCA algorithm

    Figure  6.  Optimized arrangement of element ‘0’ and element ‘1’ obtained from MATLAB to form the coding matrix

    Figure  7.  The 3D scattering patterns of the four-leaf clover-shaped coding metasurface (left column) and the PEC (right column)

    Figure  8.  The RCS of proposed coding metasurface and PEC

    Figure  9.  The fabricated sample of four-leaf clover-shaped coding metasurface

    Figure  10.  Experimental setup in an anechoic chamber

    Figure  11.  Comparison of simulation and measurement results

    Table  1.   Comparison of our work with earlier works

    Ref.Freq. band (GHz)σR (dB)Metasurface arrangementThicknessFBW (%)
    [26]12.2~23.410Spiral coding0.12λ062
    [27]5.57~7.37 10Ergodic0.06λ028
    This work15.5~26.5, 30.5~40.510WCA0.13λ080
    λ0 is the free-space wavelength corresponding to the center frequency of the operation bandwidth.
    FBW: The fractional bandwidth FBW= (fHfL)/fc, fc = (fH + fL) /2
    σR: RCS reduction
    下载: 导出CSV
  • [1] MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98. doi: 10.1038/s41377-019-0205-3
    [2] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943. doi: 10.1038/nnano.2015.186
    [3] SCHURIG D, MOCK J J, JUSTICE B, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628
    [4] ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2
    [5] LI Yong and ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters, 2016, 108(6): 063502. doi: 10.1063/1.4941338
    [6] CUI Tiejun, QI Mengqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [7] ZHENG Yuejun, GAO Jun, CAO Xiangyu, et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1582–1585. doi: 10.1109/LAWP.2015.2413456
    [8] PAQUAY M, IRIARTE J C, EDERRA I, et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630–3638. doi: 10.1109/TAP.2007.910306
    [9] GALARREGUI J C I, PEREDA A T, DE FALCÓN J L M, et al. Broadband radar cross-section reduction using amc technology[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6136–6143. doi: 10.1109/TAP.2013.2282915
    [10] JIA Yongtao, LIU Ying, GUO Y J, et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 179–188. doi: 10.1109/TAP.2015.2502981
    [11] WANG He, HUANG Jiyao, WANG Honglin, et al. Chaos-based coding metasurface for radar cross-section reduction[J]. Journal of Physics D: Applied Physics, 2019, 52(40): 405304. doi: 10.1088/1361-6463/ab2dc6
    [12] CHEN Jie, CHENG Qiang, ZHAO Jie, et al. Reduction of radar cross section based on a metasurface[J]. Progress in Electromagnetics Research, 2014, 146: 71–76. doi: 10.2528/PIER14022606
    [13] SUI Sai, MA Hua, WANG Jiafu, et al. Absorptive coding metasurface for further radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(6): 065603. doi: 10.1088/1361-6463/aaa3be
    [14] LI Sijia, CAO Xiangyu, XU Liming, et al. Ultra-broadband reflective metamaterial with rcs reduction based on polarization convertor, information entropy theory and genetic optimization algorithm[J]. Scientific Reports, 2016, 6: 37409. doi: 10.1038/srep37409
    [15] LI Haipeng, WANG Guangming, CAI Tong, et al. Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface[J]. Physical Review Applied, 2019, 11(1): 014043. doi: 10.1103/PhysRevApplied.11.014043
    [16] SUN Hengyi, GU Changqing, CHEN Xinlei, et al. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction[J]. Scientific Reports, 2017, 7: 40782. doi: 10.1038/srep40782
    [17] SU Jianxun, LU Yao, LIU Jiayi, et al. A novel checkerboard metasurface based on optimized multielement phase cancellation for superwideband RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7091–7099. doi: 10.1109/TAP.2018.2870372
    [18] YANG Jianing, HUANG Cheng, SONG Jiakun, et al. Ultra-broadband low scattering metasurface utilizing mixed-elements based on phase cancellation[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025102. doi: 10.1088/1361-6463/ab4b2e
    [19] HAJI-AHMADI M J, NAYYERI V, SOLEIMANI M, et al. Pixelated checkerboard metasurface for ultra-wideband radar cross section reduction[J]. Scientific Reports, 2017, 7(1): 11437. doi: 10.1038/s41598-017-11714-y
    [20] SUI Sai, MA Hua, LV Yueguang, et al. Fast optimization method of designing a wideband metasurface without using the Pancharatnam–Berry phase[J]. Optics Express, 2018, 26(2): 1443–1451. doi: 10.1364/OE.26.001443
    [21] ESKANDAR H, SADOLLAH A, BAHREININEJAD A, et al. Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Computers & Structures, 2012, 110/111: 151–166. doi: 10.1016/j.compstruc.2012.07.010
    [22] FENG Maochang, LI Yongfeng, ZHENG Qiqi, et al. Two-dimensional coding phase gradient metasurface for rcs reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(37): 375103. doi: 10.1088/1361-6463/aad5ad
    [23] ZHENG Qiqi, LI Yongfeng, ZHANG Jieqiu, et al. Wideband, wide-angle coding phase gradient metasurfaces based on pancharatnam-berry phase[J]. Scientific Reports, 2017, 7: 43543. doi: 10.1038/srep43543
    [24] SU Pei, ZHAO Yongjiu, JIA Shengli, et al. An ultra-wideband and polarization-independent metasurface for RCS reduction[J]. Scientific Reports, 2016, 6: 20387. doi: 10.1038/srep20387
    [25] ZHUANG Yaqiang, WANG Guangming, LIANG Jiangang, et al. Random combinatorial gradient metasurface for broadband, wide-angle and polarization-independent diffusion scattering[J]. Scientific Reports, 2017, 7(1): 16560. doi: 10.1038/s41598-017-16910-4
    [26] YUAN Fang, WANG Guangming, XU Hexiu, et al. Broadband RCS reduction based on spiral-coded metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3188–3191. doi: 10.1109/LAWP.2017.2768129
    [27] LIU Xiao, GAO Jun, XU Liming, et al. A coding diffuse metasurface for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 724–727. doi: 10.1109/LAWP.2016.2601108
    [28] SU Jianxun, HE Huan, LI Zengrui, et al. Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering[J]. Scientific Reports, 2018, 8(1): 8182. doi: 10.1038/s41598-018-26386-5
    [29] HAN Xinmin, XU Haojun, CHANG Yipeng, et al. Multiple diffuse coding metasurface of independent polarization for RCS reduction[J]. IEEE Access, 2020, 8: 162313–162321. doi: 10.1109/ACCESS.2020.3021650
    [30] CHEN Ke, CUI Li, FENG Yijun, et al. Coding metasurface for broadband microwave scattering reduction with optical transparency[J]. Optics Express, 2017, 25(5): 5571–5579. doi: 10.1364/OE.25.005571
  • 加载中
图(11) / 表(1)
  • 文章访问数:  253
  • HTML全文浏览量:  191
  • PDF下载量:  84
  • 被引次数: 0
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-06-21
  • 网络出版日期:  2021-06-24
  • 刊出日期:  2021-06-28