地基干涉合成孔径雷达图像非线性大气相位补偿方法

胡程 邓云开 田卫明 曾涛

胡程, 邓云开, 田卫明, 等. 地基干涉合成孔径雷达图像非线性大气相位补偿方法[J]. 雷达学报, 2019, 8(6): 831–840. doi: 10.12000/JR19073
引用本文: 胡程, 邓云开, 田卫明, 等. 地基干涉合成孔径雷达图像非线性大气相位补偿方法[J]. 雷达学报, 2019, 8(6): 831–840. doi: 10.12000/JR19073
HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method of nonlinear atmospheric phase applied for GB-InSAR images[J]. Journal of Radars, 2019, 8(6): 831–840. doi: 10.12000/JR19073
Citation: HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method of nonlinear atmospheric phase applied for GB-InSAR images [J]. Journal of Radars, 2019, 8(6): 831–840. doi: 10.12000/JR19073

地基干涉合成孔径雷达图像非线性大气相位补偿方法

doi: 10.12000/JR19073
基金项目: 国家自然科学基金(61427802, 61601031)
详细信息
    作者简介:

    胡程:胡 程(1981–) 男,湖南岳阳人,博士,北京理工大学,研究员。主要研究方向为新体制合成孔径雷达系统与信号处理、生物探测雷达系统与信息处理技术等;在IEEE Trans. on GRS, IEEE Trans. on AES, J-GR, Remote Sensing等国内外期刊发表SCI论文60余篇,国内外会议发表EI论文100余篇;授权发明专利30余项。E-mail: cchchb@163.com

    邓云开(1992–) 男,河南周口人,博士,北京理工大学。主要研究为地基SAR高精度1维形变与3维形变实时测量算法,目前已发表SCI论文5篇,其他论文7篇。E-mail: yunkai_bit@foxmail.com

    通讯作者:

    胡程 cchchb@163.com

    邓云开 yunkai_bit@foxmail.com

  • 中图分类号: TN95

A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images

Funds: The National Natural Science Foundation of China (61427802, 61601031)
More Information
  • 摘要: 采用基于永久散射体(PS)技术的大气相位(AP)补偿方法对地基干涉合成孔径雷达(GB-InSAR) 干涉相位图进行分析时,部分图像的干涉相位随距离呈现出复杂的非线性,导致无法建立合理的多参数模型来模拟大气相位,常规的补偿方法不再适用。该文提出一种改进的GB-InSAR图像非线性大气相位补偿方法,首先采用常规方法对干涉相位图进行大气相位补偿,并根据PS点的补偿后相位序列的标准差,进行稳定PS点的选择,然后对稳定PS点进行子区域划分,通过反距离加权插值估计出所有PS点的大气相位,从而实现大气相位的有效补偿。采用该文所提方法,对460幅雷达图像进行了处理,相比于常规方法,可以有效地补偿干涉相位图中的非线性大气相位分量。基于若干高稳定参考点的对比结果表明,该方法减小了最大约1 rad的相位测量误差。

     

  • 图  1  场景信息

    Figure  1.  Scene information

    图  2  MIMO雷达系统照片

    Figure  2.  Photo of the MIMO radar system

    图  3  MIMO雷达图像与PS图

    Figure  3.  MIMO radar image and PS map

    图  4  长时间基线干涉相位图

    Figure  4.  Interferometric phase map with long temporal baseline

    图  5  短时间基线干涉相位图A和B

    Figure  5.  Interferometric phase maps of A and B with short temporal baselines

    图  6  形变PS点选择

    Figure  6.  Selection of deformation PS

    图  7  非线性大气相位补偿

    Figure  7.  Non-linear atmospheric phase compensation

    图  8  参考点相位曲线对比

    Figure  8.  Phase comparison curves of reference points

    图  9  累积相位图

    Figure  9.  Cumulative phase maps

  • [1] 刘斌, 葛大庆, 李曼, 等. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01

    LIU Bin, GE Daqing, LI Man, et al. Ground-based interferometric synthetic aperture radar and its applications[J]. Remote Sensing for Land &Resources, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01
    [2] 曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154–170. doi: 10.12000/JR18115

    ZENG Tao, DENG Yunkai, HU Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154–170. doi: 10.12000/JR18115
    [3] 董杰, 董妍. 基于气象数据的地基雷达大气扰动校正方法研究[J]. 测绘工程, 2014, 23(10): 72–75. doi: 10.3969/j.issn.1006-7949.2014.10.017

    DONG Jie and DONG Yan. Atmospheric artifact compensation for deformation monitoring with ground-based radar[J]. Engineering of Surveying and Mapping, 2014, 23(10): 72–75. doi: 10.3969/j.issn.1006-7949.2014.10.017
    [4] IANNINI L and GUARNIERI A M. Atmospheric phase screen in ground-based radar: Statistics and compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 537–541. doi: 10.1109/LGRS.2019.1590876
    [5] 黄长军, 夏红梅, 周吕. 基于GCP方法的地基InSAR大气扰动误差改正分析[J]. 测绘与空间地理信息, 2018, 41(10): 8–11. doi: 10.3969/j.issn.1672-5867.2018.10.003

    HUANG Changjun, XIA Hongmei, and ZHOU Lyu. Atmospheric disturbance error correction in GB-InSAR based on ground control point[J]. Geomatics &Spatial Information Technology, 2018, 41(10): 8–11. doi: 10.3969/j.issn.1672-5867.2018.10.003
    [6] 徐亚明, 周校, 王鹏, 等. GB-SAR构建永久散射体网改正气象扰动方法[J]. 武汉大学学报: 信息科学版, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507

    XU Yaming, ZHOU Xiao, WANG Peng, et al. A method of constructing permanent scatterers network to correct the meteorological disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507
    [7] NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459–1471. doi: 10.1109/tgrs.2005.848707
    [8] IGLESIAS R, FABREGAS X, AGUASCA A, et al. Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2436–2449. doi: 10.1109/TGRS.2019.1590876
    [9] HU Cheng, DENG Yunkai, TIAN Weiming, et al. A PS processing framework for long-term and real-time GB-SAR monitoring[J]. International Journal of Remote Sensing, 2019, 40(16): 6298–6314. doi: 10.1080/01431161.2019.1590876
    [10] 张祥, 陆必应, 宋千. 地基SAR差分干涉测量大气扰动误差校正[J]. 雷达科学与技术, 2011, 9(6): 502–506, 512. doi: 10.3969/j.issn.1672-2337.2011.06.004

    ZHANG Xiang, LU Biying, and SONG Qian. Atmospheric disturbance correction in ground-based SAR differential interferometry[J]. Radar Science and Technology, 2011, 9(6): 502–506, 512. doi: 10.3969/j.issn.1672-2337.2011.06.004
    [11] HU Cheng, ZHU Mao, ZENG Tao, et al. High-precision deformation monitoring algorithm for GBSAR system: Rail determination phase error compensation[J]. Science China Information Sciences, 2015, 59(8): 082307. doi: 10.1007/s11432-015-5446-z
    [12] 张建萍, 刘希玉. 基于聚类分析的K-means算法研究及应用[J]. 计算机应用研究, 2007, 24(5): 166–168. doi: 10.3969/j.issn.1001-3695.2007.05.051

    ZHNAG Jianping and LIU Xiyu. Application in cluster′s analysis is analyzed in children development period[J]. Application Research of Computers, 2007, 24(5): 166–168. doi: 10.3969/j.issn.1001-3695.2007.05.051
    [13] 朱吉祥, 张礼中, 周小元, 等. 反距离加权法在区域滑坡危险性评价中的应用[J]. 水土保持通报, 2012, 32(3): 136–140. doi: 10.13961/j.cnki.stbctb.2012.03.009

    ZHU Jixiang, ZHANG Lizhong, ZHOU Xiaoyuan, et al. Application of inverse distance weighted method to regional landslide hazards assessment[J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 136–140. doi: 10.13961/j.cnki.stbctb.2012.03.009
    [14] 刘作利, 刘景玉, 申修强, 等. 唐山马兰庄铁矿露天开采边坡变形监测的GB-InSAR技术[J]. 现代矿业, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047

    LIU Zuoli, LIU Jingyu, SHEN Xiuqiang, et al. Deformation monitoring of the open-pit slope of Malanshan iron mine in Tangshan city based on GB-InSAR[J]. Modern Mining, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047
    [15] TIAN Weiming, ZHAO Zheng, HU Cheng, et al. GB-InSAR-based DEM generation method and precision analysis[J]. Remote Sensing, 2019, 11(9): 997. doi: 10.3390/rs11090997
    [16] HU Cheng, WANG Jingyang, TIAN Weiming, et al. Design and imaging of ground-based multiple-input multiple-output synthetic aperture radar (MIMO SAR) with non-collinear arrays[J]. Sensors, 2017, 17(3): 598. doi: 10.3390/s17030598
  • 加载中
图(9)
计量
  • 文章访问数:  1832
  • HTML全文浏览量:  600
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-11-08
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回