高分辨率滑动聚束SAR BP成像及其异构并行实现

唐江文 邓云凯 王宇 赵硕 李宁

唐江文, 邓云凯, 王宇, 赵硕, 李宁. 高分辨率滑动聚束SAR BP成像及其异构并行实现[J]. 雷达学报, 2017, 6(4): 368-375. doi: 10.12000/JR16053
引用本文: 唐江文, 邓云凯, 王宇, 赵硕, 李宁. 高分辨率滑动聚束SAR BP成像及其异构并行实现[J]. 雷达学报, 2017, 6(4): 368-375. doi: 10.12000/JR16053
Tang Jiangwen, Deng Yunkai, Wang Robert, Zhao Shuo, Li Ning. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation[J]. Journal of Radars, 2017, 6(4): 368-375. doi: 10.12000/JR16053
Citation: Tang Jiangwen, Deng Yunkai, Wang Robert, Zhao Shuo, Li Ning. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation[J]. Journal of Radars, 2017, 6(4): 368-375. doi: 10.12000/JR16053

高分辨率滑动聚束SAR BP成像及其异构并行实现

doi: 10.12000/JR16053
基金项目: 

国家自然科学基金(61172122),中国科学院百人计划 (61422113)

详细信息
    作者简介:

    唐江文(1988-),男,籍贯山东聊城,本科毕业于中国科学技术大学,现于中国科学院电子学研究所攻读博士学位,主要研究方向为合成孔径雷达时域成像算法以及大规模并行计算。E-mail:jiangwen@mail.ustc.edu.cn;邓云凯(1962-),男,研究员,博士生导师,研究方向为星载SAR系统设计、成像及微波遥感理论;王宇(1979-),男,研究员,博士生导师,研究方向为星载SAR系统设计及信号处理。

    通讯作者:

    李宁,lining_nuaa@163.com

High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation

Funds: 

The National Natural Science Foundation of China (61172122), One Hundred Person Project of the Chinese Academy of Sciences (61422113)

  • 摘要: 当前高分辨率合成孔径雷达对成像算法以及计算能力都提出了巨大挑战,滑动聚束是实现高分辨率的一种重要模式,它能够同时兼顾高分辨率和方位向宽测绘带。在滑动聚束模式下,受轨道弯曲、调频率时变等影响,传统的频域成像算法的聚焦性能会下降,为突破这种局限性,该文采用BP(Back-Projection)算法进行精确成像,并针对BP算法O(N3)的高计算复杂度提出了一种基于CPU/GPU异构计算平台的高效并行算法,充分利用了计算机的计算资源,提高了成像效率,其中调度线程的设计,也提高了成像的灵活性。
  • [1] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1):1-10.Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10.
    [2] Werninghaus R. TerraSAR-X mission[C]. SAR Image Analysis, Modeling, and Techniques VI, Barcelona, Spain, 2003:9-16.
    [3] Mittermayer J, Lord R, and Borner E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, 2003, 3:1462-1464.
    [4] Lanari R, Tesauro M, Sansosti E, et al.. Spotlight SAR data focusing based on a two-step processing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9):1993-2004.
    [5] Xu Wei, Huang Ping-ping, and Deng Yun-kai. TOPSAR data focusing based on azimuth scaling preprocessing[J]. Advances in Space Research, 2011, 48(2):270-277.
    [6] Desai M D and Jenkins W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4):505-517.
    [7] Ozdemir C. Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms[M]. John Wiley Sons, 2012.
    [8] Owens J D, Houston M, Luebke D, et al.. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5):879-899.
    [9] Krakiwsky S E, Turner L E, and Okoniewski M M. Acceleration of Finite-Difference Time-Domain (FDTD) using Graphics Processor Units (GPU)[C]. 2004 IEEE MTT-S International Microwave Symposium Digest, 2004, 2:1033-1036.
    [10] Cire?an D, Meier U, Masci J, et al.. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32:333-338.
    [11] Fasih A and Hartley T. GPU-accelerated synthetic aperture radar backprojection in CUDA[C]. 2010 IEEE Radar Conference, Washington, DC, 2010:1408-1413.
    [12] Capozzoli A, Curcio C, and Liseno A. Fast GPU-based interpolation for SAR backprojection[J]. Progress In Electromagnetics Research, 2013, 133:259-283.
    [13] 丁金闪, Otmar L, Holger N, 等. 异构平台双基SAR成像的RD算法[J]. 电子学报, 2009, 37(6):1170-1173.Ding Jin-shan, Otmar L, Holger N, et al.. Focusing bistatic SAR data from herterogeneous platforms using the range Doppler algorithm[J]. Acta Electronica Sinica, 2009, 37(6):1170-1173.
    [14] Song Ming-cong, Liu Ya-bo, Zhao Feng-jun, et al..Processing of SAR data based on the heterogeneous architecture of GPU and CPU[C]. 2013 IET International Radar Conference, Xi'an, China, 2013:1-5.
    [15] Mittermayer J, Wollstadt S, Prats-Iraola P, et al.. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3695-3706.
    [16] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation[M]. Artech House, 2005.
    [17] Gorham L R A and Moore L J. SAR image formation toolbox for MATLAB[C]. Algorithms for Synthetic Aperture Radar Imagery XVⅡ, Orlando, USA, 2010:769906.
    [18] Nickolls J and Dally W J. The GPU computing era[J]. IEEE Micro, 2010, 30(2):56-69.
    [19] Kirk D. NVIDIA CUDA software and GPU parallel computing architecture[C]. Proceedings of the 6th International Symposium on Memory Management, New York, USA, 2007, 7:103-104.
  • [1] 韦维, 朱岱寅, 吴迪.  基于尺度变换原理的SAR波数域成像算法 . 雷达学报, 2020, 9(2): 354-362. doi: 10.12000/JR19112
    [2] 李晓峰, 张彪, 杨晓峰.  星载合成孔径雷达遥感海洋风场波浪场 . 雷达学报, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [3] 卫扬铠, 曾涛, 陈新亮, 丁泽刚, 范宇杰, 温育涵.  典型线面目标合成孔径雷达参数化成像 . 雷达学报, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [4] 李永祯, 黄大通, 邢世其, 王雪松.  合成孔径雷达干扰技术研究综述 . 雷达学报, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [5] 黄岩, 赵博, 陶明亮, 陈展野, 洪伟.  合成孔径雷达抗干扰技术综述 . 雷达学报, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [6] 龙腾, 丁泽刚, 肖枫, 王岩, 李喆.  星载高分辨频率步进SAR成像技术 . 雷达学报, 2019, 8(6): 782-792. doi: 10.12000/JR19076
    [7] 邢孟道, 林浩, 陈溅来, 孙光才, 严棒棒.  多平台合成孔径雷达成像算法综述 . 雷达学报, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [8] 吴玉峰, 叶少华, 冯大政.  基于方位相位编码的脉内聚束SAR成像方法 . 雷达学报, 2018, 7(4): 437-445. doi: 10.12000/JR17114
    [9] 任笑真, 杨汝良.  一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法 . 雷达学报, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [10] 赵团, 邓云凯, 王宇, 李宁, 王翔宇.  基于扇贝效应校正的改进滑动Mosaic全孔径成像算法 . 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
    [11] 韩萍, 王欢.  基于改进的稀疏保持投影的SAR目标特征提取与识别 . 雷达学报, 2015, 4(6): 674-680. doi: 10.12000/JR15068
    [12] 金添.  叶簇穿透合成孔径雷达增强成像方法 . 雷达学报, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [13] 师君, 马龙, 韦顺军, 时代奇, 张晓玲, 陈刚.  基于导航数据的Ka 波段InSAR 成像处理与分析 . 雷达学报, 2014, 3(1): 19-27. doi: 10.3724/SP.J.1300.2014.13142
    [14] 高阳, 禹卫东, 冯锦, 郑世超, 杨亮.  一种基于勒让德拟合的SAR 后向投影自聚焦算法 . 雷达学报, 2014, 3(2): 176-182. doi: 10.3724/SP.J.1300.2014.14011
    [15] 折小强, 仇晓兰, 韩冰, 雷斌.  一种基于变换域的滑动聚束SAR 调频率估计方法 . 雷达学报, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [16] 毛永飞, 汪小洁, 向茂生.  机载干涉SAR 区域网三维定位算法 . 雷达学报, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
    [17] 李春升, 杨威, 王鹏波.  星载SAR 成像处理算法综述 . 雷达学报, 2013, 2(1): 111-122. doi: 10.3724/SP.J.1300.2013.20071
    [18] 张文彬, 邓云凯, 王宇.  星地双基合成孔径雷达聚束模式快速BP算法 . 雷达学报, 2013, 2(3): 357-366. doi: 10.3724/SP.J.1300.2013.13031
    [19] 马兵强.  滑动聚束FMCW-SAR的子孔径波数域成像算法 . 雷达学报, 2013, 2(3): 319-325. doi: 10.3724/SP.J.1300.2013.13044
    [20] 林世斌, 李悦丽, 严少石, 周智敏.  平地假设对合成孔径雷达时域算法成像质量的影响研究 . 雷达学报, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • 加载中
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  173
  • PDF下载量:  969
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-05-04
  • 刊出日期:  2017-08-28

高分辨率滑动聚束SAR BP成像及其异构并行实现

doi: 10.12000/JR16053
    基金项目:

    国家自然科学基金(61172122),中国科学院百人计划 (61422113)

    作者简介:

    唐江文(1988-),男,籍贯山东聊城,本科毕业于中国科学技术大学,现于中国科学院电子学研究所攻读博士学位,主要研究方向为合成孔径雷达时域成像算法以及大规模并行计算。E-mail:jiangwen@mail.ustc.edu.cn;邓云凯(1962-),男,研究员,博士生导师,研究方向为星载SAR系统设计、成像及微波遥感理论;王宇(1979-),男,研究员,博士生导师,研究方向为星载SAR系统设计及信号处理。

    通讯作者: 李宁,lining_nuaa@163.com

摘要: 当前高分辨率合成孔径雷达对成像算法以及计算能力都提出了巨大挑战,滑动聚束是实现高分辨率的一种重要模式,它能够同时兼顾高分辨率和方位向宽测绘带。在滑动聚束模式下,受轨道弯曲、调频率时变等影响,传统的频域成像算法的聚焦性能会下降,为突破这种局限性,该文采用BP(Back-Projection)算法进行精确成像,并针对BP算法O(N3)的高计算复杂度提出了一种基于CPU/GPU异构计算平台的高效并行算法,充分利用了计算机的计算资源,提高了成像效率,其中调度线程的设计,也提高了成像的灵活性。

English Abstract