雷达极化技术研究现状与展望

王雪松

王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119-131. doi: 10.12000/JR16039
引用本文: 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Citation: Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039

雷达极化技术研究现状与展望

doi: 10.12000/JR16039
基金项目: 

国家自然科学基金(61490690, 61490693, 61302143)

详细信息
    作者简介:

    王雪松(1972–),男,内蒙古人,博士,教授,国防科技大学理学院院长,主要研究方向为极化信息处理、雷达目标识别、新体制雷达技术。E-mail:wangxuesong@nudt.edu.cn

    通讯作者:

    王雪松wxs1019@vip.sina.com

Status and Prospects of Radar Polarimetry Techniques

Funds: 

The National Natural Science Foundation of China (61490690, 61490693, 61302143)

  • 摘要: 雷达极化学是研究雷达波与目标相互作用过程中的变极化效应、揭示其作用机理的一门应用基础科学,在微波遥感、对地勘察、气象探测、战场侦察、抗干扰、目标识别等领域有重大应用前景。该文简要回顾了雷达极化理论与技术的发展历程,综述了雷达极化信息精确获取、极化敏感阵列信号处理、目标极化特性、极化抗干扰、目标极化分类识别等关键技术的研究现状,最后对雷达极化技术的发展做了展望。
  • [1] Mott H著, 林昌禄译. 天线和雷达中的极化[M]. 成都: 电子科技大学出版社, 1989. Mott H. Polarization in Antennas and Eadars[M]. Chengdu: University of Electronic Science and Technology of China Press, 1989.
    [2] 庄钊文, 肖顺平, 王雪松. 雷达极化信息处理及其应用[M]. 北京: 国防工业出版社, 1999. Zhuang Zhaowen, Xiao Shunping, and Wang Xuesong. Radar Polarization Information Processing and Application[M]. Beijing: National Defense Industry Press, 1999.
    [3] 王雪松. 宽带极化信息处理的研究[D]. [博士论文], 国防科学技术大学研究生院, 1999. Wang Xue-song. Study on wideband polarization information processing[D]. [Ph.D. dissertation], Graduate School of National University of Defense Technology, 1999.
    [4] Sinclair G. The transmission and reception of elliptically polarized waves[J]. Proceedings of the IRE, 1950, 38(2): 148-151.
    [5] Kennaugh E M. Polarization properties of radar reflection[D]. Ohio State University, 1952.
    [6] Graves C D. Radar polarization power scattering matrix[J]. Proceedings of the IRE, 1956, 44(2): 248-252.
    [7] 柯有安. 雷达散射矩阵与极化匹配接收[J]. 电子学报, 1963, (3): 1-11. Ke Youan. Radar scattering matrix and polarization matching Receive[J]. Acta Electronica Sinica, 1963, (3): 1-11.
    [8] Ke Y A and Liu Z W. Early studies on target models in China[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1070-1075.
    [9] Huynen J R. Phenomenological theory of radar targets[D]. Delft University of Technology, 1970.
    [10] Kostinski A B and Boerner W M. On foundations of radar polarimetry[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(12): 1395-1404.
    [11] Boerner W M, Yan W L, Xi A Q, et al.. On the basic principles of radar polarimetry-the target characteristic polarization state theory of Kennaugh, Huynens polarization fork concept, and its extension to the partially polarized case[J]. Proceedings of the IEEE, 1991, 79(10): 1538-1550.
    [12] Giuli D. Polarization diversity in radars[J]. Proceedings of the IEEE, 1986, 74(2): 245-269.
    [13] van Zyl J J, Zebker H A, and Elachi C. Imaging radar polarization signatures: theory and observation[J]. Radio Science, 1987, 22(4): 529-543.
    [14] Zebker H A and Van Zyl J J. Imaging radar polarimetry: a review[J]. Proceedings of the IEEE, 1991, 79(11): 1583-1606.
    [15] Weadon M, Heinselman P L, Forsyth D, et al.. Multifunction phased-array radar[J]. Bulletin of the American Meteorological Society, 2009, 90(3): 385-389.
    [16] Weber M E, Cho J Y N, Herd J S, et al.. The next generation multi-mission U. S. Surveillance radar network[J]. Bulletin of the American Meteorological Society, 2007, 88(11): 1739-1751.
    [17] Rodriguez-Cassola M, Prats P, Schulze D, et al.. First biostatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 33-37.
    [18] Shimada M, Tadono T, and Rosenqvist A. Advanced Land Observing Satellite (ALOS) and monitoring global environmental change[J]. Proceedings of the IEEE, 2010, 98(5): 780-799.
    [19] Doviak R J, Bringi V, Ryzhkov, et al.. Considerations for polarimetric upgrades to operational WSR-88D radars[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(3): 257-278.
    [20] Krasnov O A, Ligthart L P, Li Z, et al.. The PARSAX - full polarimetric FMCW radar with dual-orthogonal signals[C]. European Radar Conference, Delft, the Netherlands, 2008: 84-87.
    [21] 陈思伟, 代大海, 李盾, 等. Radarsat-2 的系统组成及技术革新分析[J]. 航天电子对抗, 2008, 24(1): 33-36. Chen Si-wei, Dai Da-hai, Li Dun, et al.. Constitution and technical advancements of Radarsat-2[J]. Aerospace Electronic Warfare, 2008, 24(1): 33-36.
    [22] Stone M L and Banner G P. Radars for the detection and tracking of ballistic missiles, satellites, and Planets[J]. Lincoln Laboratory Journal, 2000, 12(2): 217-244.
    [23] Titin-Schnaider C and Attia S. Calibration of the MERIC full-polarimetric radar: theory and implementation[J]. Aerospace Science and Technology, 2003, 7(8): 633-640.
    [24] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19-27. Yang Jian-yu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19-27.
    [25] Ventura J F I. Design of a high resolution X-band Doppler polarimetric weather radar[D]. Delft University of Technology, 2009.
    [26] Unal C M H. Spectral polarimetric radar clutter suppression to enhance atmospheric echoes[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(9): 1781-1797.
    [27] Brunkow D, Bringi V N, Kennedy P C, et al.. A description of the CSU-CHILL national radar facility[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(12): 1596-1608.
    [28] 王雪松, 王剑, 王涛, 等. 雷达目标极化散射矩阵的瞬时测量方法[J]. 电子学报, 2006, 34(6): 1020-1025. Wang Xue-song, Wang Jian, Wang Tao, et al.. Instantaneous measurement of radar target polarization scattering matrix[J]. Acta Electronica Sinica, 2006, 34(6): 1020-1025.
    [29] 王雪松, 李永祯, 戴幻尧, 等. 瞬态极化雷达系统及实验研究[J]. 科学通报, 2010, 55(10): 938-944. Wang Xue-song, Li Yong-zhen, Dai Huan-yao, et al.. Research on instantaneous polarization radar system and external experiment[J]. Chinese Science Bulletin, 2010, 55(10): 937-944.
    [30] 庄钊文, 徐振海, 肖顺平, 等. 极化敏感阵列信号处理[M]. 北京: 国防工业出版社, 2005. Zhuang Zhaowen, Xu Zhenhai, Xiao Shunping, et al.. Signal Processing of Polarization Sensitive Array[M]. Beijing: National Defense Industry Press, 2005.
    [31] 徐友根, 刘志文, 龚晓峰. 极化敏感阵列信号处理[M]. 北京: 北京理工大学出版社, 2013. Xu Yougen, Liu Zhiwen, and Gong Xiaofeng. Signal Processing of Polarization Sensitive Array[M]. Beijing: Beijing Institute of Technology Press, 2013.
    [32] Showman G A, Melvin W L, and Belenkii M. Performance evaluation of two polarimetric STAP architectures[C]. Proceedings of the IEEE Radar Conference, Huntsville, Alabama, USA, 2003: 59-65.
    [33] Ferro-Famil L, Cristallini D, Colone F, et al.. Exploiting polarization together with space-time adaptive processing for GMTI in high resolution SAR images[C]. Proceedings of the European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 402-405.
    [34] Fante R L and Vaccaro J J. Evaluation of adaptive space-time-polarization cancellation of broadband interference[C]. Proceedings of the IEEE Position Location and Navigation Symposium, Palms Springs, California, USA, 2002.
    [35] Hurtado M, Xiao J J, and Nehorai A. Adaptive polarimetric design for target estimation, detection, and tracking[J]. IEEE Signal Processing Magazine, 2009, 26: 576-587.
    [36] Fulton C and Chappell W J. Calibration of a digital phased array for polarimetric radar[C]. The IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, USA, 2010: 161-164.
    [37] Bencheikh M L and Wang Y. Combined esprit-rootmusic for DOA-DOD estimation in polarimetric bistatic MIMO radar[J]. Progress in Electromagnetics Research Letters, 2011, 22: 109-117.
    [38] Pathak P H, Carluccio G, and Albani M. The uniform geometrical theory of diffraction and some of its applications[J]. IEEE Antennas and Propagation Magazine, 2013, 55(4): 41-69. [40] Aguilar G A and Pathak P H. A time domain formulation of the uniform geometrical theory of diffraction for scattering from a smooth convex surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5144-5154.
    [39] Weinmann F. UTD shooting-and-bouncing extension to a PO/PTD ray tracing algorithm[J]. Applied Computational Electromagnetics Society Journal, 2009, 24(3): 281-293.
    [40] Chew W C, Jin J M, and Song J M. Fast and Efficient Algorithms in Computational Electromagnetics[M]. Boston: Artech House, 2001.
    [41] 胡俊, 聂在平, 王军, 等. 三维电大目标散射求解的多层快速多极子方法[J]. 电波科学学报, 2004, 19(5): 509-514. Hu Jun, Nie Zai-ping, Wang Jun, et al.. Multilevel fast multipole algorithm for solving scattering from 3-D electrically large object[J]. Chinese Journal of Radio Science, 2004, 19(5): 509-514.
    [42] Ergul O and Gurel L. Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scatterig problems[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2335-2344.
    [43] Mortensen H B. Implementation of bistatic polarimetric calibration procedure for the EMSL[R]. European Microwave Signature Laboratory, 1995, 25.
    [44] Krogager E. Aspects of polarimetric radar imaging[D]. Technical University of Denmark, 1993.
    [45] Cameron W L, Youssef N N, and Leung L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793-803.
    [46] Freeman A and Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
    [47] Yamaguchi Y, Sato A, Boerner W M, et al.. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251-2258.
    [48] Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    [49] Chen S W, Li Y Z, Wang X S, et al.. Modeling and interpretation of scattering mechanisms in polarimetric SAR: advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 79-89.
    [50] Hurst M P and Mittra R. Scattering center analysis via pronys method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986-988.
    [51] Potter L C, Chiang D M, and Carriere R. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1067.
    [52] Potter L C and Moses R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 5(1): 79-91.
    [53] Gerry M J, Potter L C, and Gupta I J. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179-1188.
    [54] Jackson J A and Moses R L. Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR[J]. Proceedings of SPIE, 2006, 6237(1): 55-66.
    [55] 李永祯, 肖顺平, 王雪松, 等. 雷达极化抗干扰技术[M]. 北京: 国防工业出版社, 2010. Li Yongzhen, Xiao Shunping, Wang Xuesong, et al.. Radar Polarization ECCM Technology[M]. Beijing: National Defense Industry Press, 2010.
    [56] Nathanson F E. Adaptive circular polarization[C]. IEEE International Radar Conference, Arlington, VA, USA, 1975: 221-225.
    [57] Moisseev D N, Unal C M H, Russchenberg H W J, et al.. Doppler polarimetric ground clutter identification and suppression for atmospheric radars based on co-polar correlation[C]. Proceedings of International Conference on Microwaves, Radar and Wireless Communications, 2000, 1: 94-97.
    [58] Unal C M H and Moisseev D N. Combined doppler and polarimetric radar measurements: correction for spectrum aliasing and non-simultaneous polarimetric measurements[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(3): 443-456.
    [59] 张国毅, 刘永坦. 高频地波雷达的三维极化滤波[J]. 电子学报, 2000, 28(9): 114-116. Zhang Guo-yi and Liu Yong-tan. Three dimension polarization filtering of HF ground wave radar[J]. Acta Electronica Sinica, 2000, 28(9): 114-116.
    [60] 张国毅, 刘永坦. 高频地波雷达多干扰的极化抑制[J]. 电子学报, 2001, 29(9): 1206-1209. Zhang Guo-yi and Liu Yong-tan. Polarization suppression of multidisturbance in HF ground wave radar[J]. Acta Electronica Sinica, 2001, 29(9): 1206-1209.
    [61] 任博, 施龙飞, 王洪军, 等. 抑制雷达主波束内GSM干扰的极化滤波方法研究[J]. 电子与信息学报, 2014, 36(2): 459-464. Ren Bo, Shi Long-fei, Wang Hong-jun, et al.. Investigation on of polarization filtering scheme to suppress GSM interference in radar main beam[J]. Journal of Electronics Information Technology, 2014, 36(2): 459-464.
    [62] Lombardo P, Pastina D, and Bucciarelli T. Adaptive polarimetric target detection with coherent radar. Part I: Detection against Gaussian background[J]. IEEE Transactions on Aerospace Electronic Systems, 2001, 37(4): 1194-1206.
    [63] Lombardo P, Pastina D, and Bucciarelli T. Adaptive polarimetric target detection with coherent radar. Part II: Detection against non-Gaussian background[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1207-1220.
    [64] 庄钊文, 王雪松, 等, 雷达目标识别[M]. 北京: 高等教育出版社, 2015. Zhuang Zhaowen, Wang Xuesong, et al.. Radar Target Reorganization[M]. Beijing: Higher Education Press, 2015.
    [65] 肖顺平. 宽带极化雷达目标识别的理论与应用[D]. 国防科学技术大学, 1995. Xiao Shunping. The theory and application of target recognition for wideband polarimetric radar[D]. National University of Defense Technology, 1995.
    [66] 肖顺平, 王雪松, 代大海, 等. 极化雷达成像处理及应用[M]. 北京: 科学出版社, 2013. Xiao Shunping, Wang Xuesong, Dai Dahai, et al.. Polarimetric Radar Imaging Processing and Application[M]. Beijing: Science Press, 2013.
    [67] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005. Huang Peikang, Yin Hongcheng, and Xu Xiaojian. Radar Target Characteristic[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [68] Jin Y Q. Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing[M]. Berlin Heidelberg, New York: Springer, 2005.
    [69] 聂在平, 方大刚. 目标与环境电磁散射特性建模[M]. 北京: 国防工业出版社, 2009. Nie Zaiping and Fang Dagang. Modeling of Electromagnetic Scattering Characteristics of Target and Environment[M]. Beijing: National Defense Industry Press, 2009.
    [70] Chamberlain N F, Walton E K, and Garber F D. Radar target identification of aircraft using polarization-diverse features[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 58-67.
    [71] 习远望, 张江华, 刘逸平. 空地导弹雷达导引头最新技术进展[J]. 火控雷达技术, 2010, 39(2): 17-22. Xi Yuan-wang, Zhang Jiang-hua, and Liu Yi-ping. The latest technique progress on air to ground radar seeker[J]. Fire Control Radar Technology, 2010, 39(2): 17-22.
    [72] Lee J S and Pottier E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton, US: CRC Press, 2009.
    [73] van Zyl J J and Kim Y. Synthetic Aperture Radar Polarimetry[M]. Hoboken, NJ: Wiley, 2011.
    [74] Cloude S R. Polarization Application in Remote Sensing[M]. New York, US: Oxford University Press, 2010.
    [75] Yamaguchi Y. Radar Polarimetry from Basics to Applications: Radar Remote Sensing Using Polarimetric Information[M]. IEICE Press, 2007.
    [76] Boerner W M. Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 113-124.
    [77] 吴一戎, 洪文, 王彦平. 极化干涉SAR 的研究现状与启示[J]. 电子与信息学报, 2007, 29(5): 1258-1262. Wu Yi-rong, Hong Wen, and Wang Yan-ping. The currentstatus and implications of polarimetric SAR interferometry[J]. Journal of Electronics Information Technology, 2007, 29(5): 1258-1262.
    [78] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135-142. Wu Yi-rong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142.
    [79] Cloude S R and Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551-1565.
    [80] Reigber A. Airborne polarimetric SAR tomography[D]. University of Stuttgart, 2001.
  • [1] 文贡坚, 马聪慧, 丁柏圆, 宋海波.  基于部件级三维参数化电磁模型的SAR目标物理可解释识别方法 . 雷达学报, 2020, 9(4): 608-621. doi: 10.12000/JR20099
    [2] 施龙飞, 全源, 范金涛, 马佳智.  通信化雷达探测技术 . 雷达学报, 2020, 9(): 1-8. doi: 10.12000/JR20088
    [3] 丁金闪.  视频SAR成像与动目标阴影检测技术 . 雷达学报, 2020, 9(2): 321-334. doi: 10.12000/JR20018
    [4] 李玮杰, 杨威, 黎湘, 刘永祥.  一种噪声环境下的雷达目标高分辨率距离像鲁棒识别方法 . 雷达学报, 2020, 9(4): 622-631. doi: 10.12000/JR19093
    [5] 陈小龙, 陈唯实, 饶云华, 黄勇, 关键, 董云龙.  飞鸟与无人机目标雷达探测与识别技术进展与展望 . 雷达学报, 2020, 9(5): 803-827. doi: 10.12000/JR20068
    [6] 杨建宇.  雷达对地成像技术多向演化趋势与规律分析 . 雷达学报, 2019, 8(6): 669-692. doi: 10.12000/JR19099
    [7] 马佳智, 施龙飞, 徐振海, 王雪松.  单脉冲雷达多点源参数估计与抗干扰技术进展 . 雷达学报, 2019, 8(1): 125-139. doi: 10.12000/JR18093
    [8] 许京伟, 朱圣棋, 廖桂生, 张玉洪.  频率分集阵雷达技术探讨 . 雷达学报, 2018, 7(2): 167-182. doi: 10.12000/JR18023
    [9] 许小剑, 刘永泽.  MIMO雷达三维干涉诊断成像方法 . 雷达学报, 2018, 7(6): 655-663. doi: 10.12000/JR18088
    [10] 章鹏飞, 李刚, 霍超颖, 殷红成.  基于双雷达微动特征融合的无人机分类识别 . 雷达学报, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [11] 张群, 胡健, 罗迎, 陈怡君.  微动目标雷达特征提取、成像与识别研究进展 . 雷达学报, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [12] 丁柏圆, 文贡坚, 余连生, 马聪慧.  属性散射中心匹配及其在SAR目标识别中的应用 . 雷达学报, 2017, 6(2): 157-166. doi: 10.12000/JR16104
    [13] 康妙, 计科峰, 冷祥光, 邢相薇, 邹焕新.  基于栈式自编码器特征融合的SAR图像车辆目标识别 . 雷达学报, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [14] 张新征, 谭志颖, 王亦坚.  基于多特征-多表示融合的SAR图像目标识别 . 雷达学报, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [15] 谢文冲, 段克清, 王永良.  机载雷达空时自适应处理技术研究综述 . 雷达学报, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [16] 赵飞翔, 刘永祥, 霍凯.  基于栈式降噪稀疏自动编码器的雷达目标识别方法 . 雷达学报, 2017, 6(2): 149-156. doi: 10.12000/JR16151
    [17] 戴幻尧, 刘勇, 黄振宇, 张杨.  极化雷达导引头对多路径干扰的检测识别新方法 . 雷达学报, 2016, 5(2): 156-163. doi: 10.12000/JR16046
    [18] 任博, 施龙飞, 王国玉.  UHF波段雷达面临基站干扰信号的极化特性测量与分析 . 雷达学报, 2016, 5(2): 164-173. doi: 10.12000/JR15134
    [19] 代大海, 廖斌, 肖顺平, 王雪松.  雷达极化信息获取与处理的研究进展 . 雷达学报, 2016, 5(2): 143-155. doi: 10.12000/JR15103
    [20] 谭云华, 王李波, 李廉林.  一种抑制探地/穿墙成像多径虚假目标的新型概率模型:数值研究(英文) . 雷达学报, 2015, 4(5): 509-517. doi: 10.12000/JR15066
  • 加载中
计量
  • 文章访问数:  1790
  • HTML全文浏览量:  822
  • PDF下载量:  1567
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-16
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-04-28

雷达极化技术研究现状与展望

doi: 10.12000/JR16039
    基金项目:

    国家自然科学基金(61490690, 61490693, 61302143)

    作者简介:

    王雪松(1972–),男,内蒙古人,博士,教授,国防科技大学理学院院长,主要研究方向为极化信息处理、雷达目标识别、新体制雷达技术。E-mail:wangxuesong@nudt.edu.cn

    通讯作者: 王雪松wxs1019@vip.sina.com

摘要: 雷达极化学是研究雷达波与目标相互作用过程中的变极化效应、揭示其作用机理的一门应用基础科学,在微波遥感、对地勘察、气象探测、战场侦察、抗干扰、目标识别等领域有重大应用前景。该文简要回顾了雷达极化理论与技术的发展历程,综述了雷达极化信息精确获取、极化敏感阵列信号处理、目标极化特性、极化抗干扰、目标极化分类识别等关键技术的研究现状,最后对雷达极化技术的发展做了展望。

English Abstract

王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119-131. doi: 10.12000/JR16039
引用本文: 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Citation: Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
参考文献 (80)

目录

    /

    返回文章
    返回