[1]
|
Ross T D, Worrell S W, Velten V J, et al.. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. Aerospace/Defense Sensing and Controls, International Society for Optics and Photonics, 1998: 566-573. |
[2]
|
Tao W, Xi C, Xiangwei R, et al.. Study on SAR target recognition based on support vector machine[C]. 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009: 856-859. |
[3]
|
王璐, 张帆, 李伟, 等. 基于 Gabor 滤波器和局部纹理特征提取的 SAR 目标识别算法[J]. 雷达学报, 2015, 4(6): 658-665. DOI: 10.12000/JR15076. Wang Lu, Zhang Fan, Li Wei, et al.. A method of SAR target recognition based on Gabor filter and local texture feature extraction[J]. Journal of Radars, 2015, 4(6); 658-665. DOI: 10.12000/JR15076. |
[4]
|
齐会娇, 王英华, 丁军, 等. 基于多信息字典学习及稀疏表示的SAR目标识别[J]. 系统工程与电子技术, 2015, 37(6): 1280-1287. Qi Huijiao, Wang Yinghua, Ding Jun, et al.. SAR target recognition based on multi-information dictionary learning and sparse representation[J]. Systems Engineering and Electronics, 2015, 37(6): 1280-1287. |
[5]
|
Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
[6]
|
Hinton G E, Osindero S, and Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
[7]
|
Vincent P, Larochelle H, Lajoie I, et al.. Stacked denoisingautoencoders: learning useful representations in a deep network with a local denoisingcriterion[J]. The Journal of Machine Learning Research, 2010, 11: 3371-3408. |
[8]
|
Lecun Y, Bottou L, Bengio Y, et al.. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[9]
|
Ma Y, He J, Wu L, et al.. An effective face verification algorithm to fuse complete features in convolutional neural network[C]. MultiMedia Modeling. Springer International Publishing, 2016: 39-46. |
[10]
|
Ijjina E P and Mohan C K. Human action recognition based on motion capture information using fuzzy convolution neural networks[C]. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), Kalkata, 2015: 1-6. |
[11]
|
Ciompi F, de Hoop B, van Riel S J, et al.. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box[J]. Medical Image Analysis, 2015, 26(1): 195-202. |
[12]
|
尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48-59. Yin Bao-cai, Wang Wen-tong, and Wang Li-chun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. |
[13]
|
Lecun Y, Bengio Y, and Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[14]
|
Rumelhart D E, Hinton G E, and Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
[15]
|
孙艳丰, 齐光磊, 胡永利, 等. 基于改进 Fisher 准则的深度卷积神经网络识别算法[J]. 北京工业大学学报, 2015, 41(6): 835-841. Sun Yanfeng, Qi Guanglei, Hu Yongli, et al.. Deep convolution neural network recognition algorithm based on improved fisher criterion[J]. Journal of Beijing University of Technology, 2015, 41(6): 835-841. |
[16]
|
Cortes C and Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[17]
|
孙即祥, 等. 现代模式识别[M]. 北京: 高等教育出版社, 2008: 624-625. Sun Jixiang, et al.. Pattern Recognition[M]. Beijing: Higher Education Press, 2008: 624-625. |
[18]
|
Glorot X and Bengio Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249-256. |