基于扇贝效应校正的改进滑动Mosaic全孔径成像算法

赵团 邓云凯 王宇 李宁 王翔宇

赵团, 邓云凯, 王宇, 李宁, 王翔宇. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
引用本文: 赵团, 邓云凯, 王宇, 李宁, 王翔宇. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014
Citation: Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014

基于扇贝效应校正的改进滑动Mosaic全孔径成像算法

doi: 10.12000/JR16014
基金项目: 

国家自然科学基金优秀青年基金(61422113)

详细信息
    作者简介:

    赵团(1990-),男,河南南阳人,中国科学院电子学研究所通信与信息系统专业硕士研究生,研究方向为Mosaic模式合成孔径雷达成像技术。E-mail:zhaotuan@hust.edu.cn;邓云凯(1962-),男,研究员,现为中国科学院电子学研究所研究员,博士生导师,研究方向为星载合成孔径雷达系统设计。E-mail:ykdeng@mail.ie.ac.cn;王宇(1980-),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail:yuwang@mail.ie.ac.cn;李宁(1987-),男,安徽天长人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为多模式合成孔径雷达成像及其应用技术。E-mail:lining_nuaa@163.com;王翔宇(1990-),男,天津人,中国科学院电子学研究所通信与信息系统专业博士研究生,研究方向高分宽测模式信号处理技术。E-mail:wangxiangyu13@mails.ucas.ac.cn。

    通讯作者:

    赵团zhaotuan@hust.edu.cn

Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction

Funds: 

The National Natural Science Foundation of China (61422113)

  • 摘要: 该文提出了一种针对滑动Mosaic模式合成孔径雷达(SAR)的全孔径成像算法,包含了扇贝效应校正和尖脉冲抑制。该方法创新性地通过方位向去斜预处理,来校正由于雷达天线转动引入的天线方向图加权,即扇贝效应校正技术。尖脉冲抑制的主要思想是利用线性预测谱估计算法,通过相邻Burst数据外推来补全Burst之间的空缺数据,从而抑制由多个Burst相干处理所引起的尖脉冲,即矛刺。最后,带宽为200 MHz的C波段机载SAR系统实验处理结果验证了该文所提方法的有效性。
  • [1] Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar:Signal processing algorithms[M]. Boston·London, Artech House, 1995:1-3.
    [2] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1):1-10. Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10.
    [3] Belcher D P and Baker C J. High resolution processing of hybrid strip-map/spotlight mode SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(6):366-374.
    [4] Mittermayer J, Lord R, and Borner E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003, 3:1462-1464.
    [5] Levy-Nathansohn R and Naftaly U. Overview of the TECSAR satellite modes of operation[C]. EUSAR 2006-6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006:1-4.
    [6] Naftaly U and Levy-Nathansohn R. Overview of the TECSAR satellite hardware and mosaic mode[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):423-426.
    [7] Naftaly U. TecSAR-performance, design and status[C]. 5th European Conference on Synthetic Aperture Radar, Ulm, Germany, 2004:27-30.
    [8] Sharay Y and Naftaly U. TECSAR:Design considerations and programme status[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2):117-121.
    [9] Freeman A, Johnson W, Huneycutt B, et al.. The "myth" of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1):320-324.
    [10] Hawkins R K and Vachon P W. Modelling SAR scalloping in burst mode products from RADARSAT-1 and ENVISAT[C]. Proceedings of CEOS Working Group on Calibration/Validation SAR Workshop, London, UK, 2002.
    [11] Han X, Li S, Yu W, et al.. On the Mosaic mode spaceborne SAR[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012:3983-3986.
    [12] Davidson G W and Cumming I. Signal properties of spaceborne squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3):611-617.
    [13] Lanari R, Tesauro M, Sansosti E, et al.. Spotlight SAR data focusing based on a two-step processing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9):1993-2004.
    [14] An D, Huang X, Jin T, et al.. Extended two-step focusing approach for squinted spotlight SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7):2889-2900.
    [15] Wang Y, Zhang Z, and Deng Y. Squint spotlight SAR raw signal simulation in the frequency domain using optical principles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2208-2215.
    [16] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation[M]. Artech House, 2005.
    [17] Salzman J, Akamine D, Lefevre R, et al.. Interrupted synthetic aperture radar (SAR)[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(5):33-39.
    [18] Moore T G, Zuerndorfer B W, and Burt E C. Enhanced imagery using spectral-estimation-based techniques[J]. Lincoln Laboratory Journal, 1997, 10(2):171-186.
    [19] Bamler R. Optimum look weighting for burst-mode and ScanSAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3):722-725.
    [20] Moore R K, Claassen J P, and Lin Y H. Scanning spaceborne synthetic aperture radar with integrated radiometer[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(3):410-421.
    [21] Bamler R. Adapting precision standard SAR processors to ScanSAR[C]. 1995 International IEEE Geoscience and Remote Sensing Symposium, IGARSS'95, Quantitative Remote Sensing for Science and Applications, Firenze, Italia, 1995, 3:2051-2053.
    [22] Bamler R, Geudtner D, Schattler B, et al.. RADARSAT ScanSAR interferometry[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS'90 Proceedings, Alaska, USA, 1999, 3:1517-1521.
    [23] Li N, Wang R, Deng Y, et al.. Improved full-aperture ScanSAR imaging algorithm based on aperture interpolation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1101-1105.
    [24] Lanari R, Zoffoli S, Sansosti E, et al.. New approach for hybrid strip-map/spotlight SAR data focusing[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(6):363-372.
    [25] Xu W, Huang P, Wang R, et al.. TOPS-mode raw data processing using chirp scaling algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):235-246.
    [26] Raney R K, Runge H, Bamler R, et al.. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):786-799.
    [27] Moreira A, Mittermayer J, and Scheiber R. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and ScanSAR imaging modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5):1123-1136.
    [28] Li N, Wang R, Deng Y, et al.. MOCO for High-resolution ScanSAR via full-aperture processing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1721-1726.
    [29] Li N, Wang R, Deng Y, et al.. Extension and evaluation of PGA in ScanSAR mode using full-aperture approach[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):870-874.
    [30] Mehrdad S. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. Canada, John Wiley & Sons, Inc., 1999:220-252.
  • [1] 文贡坚, 马聪慧, 丁柏圆, 宋海波.  基于部件级三维参数化电磁模型的SAR目标物理可解释识别方法 . 雷达学报, 2020, 9(4): 608-621. doi: 10.12000/JR20099
    [2] 孙豆, 路东伟, 邢世其, 杨潇, 李永祯, 王雪松.  基于稀疏重构的全极化SAR联合多维重建 . 雷达学报, 2020, 9(5): 865-877. doi: 10.12000/JR20092
    [3] 韦维, 朱岱寅, 吴迪.  基于尺度变换原理的SAR波数域成像算法 . 雷达学报, 2020, 9(2): 354-362. doi: 10.12000/JR19112
    [4] 马琳, 潘宗序, 黄钟泠, 韩冰, 胡玉新, 周晓, 雷斌.  基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别 . 雷达学报, 2020, 9(): 1-14. doi: 10.12000/JR20106
    [5] 李晓峰, 张彪, 杨晓峰.  星载合成孔径雷达遥感海洋风场波浪场 . 雷达学报, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [6] 卫扬铠, 曾涛, 陈新亮, 丁泽刚, 范宇杰, 温育涵.  典型线面目标合成孔径雷达参数化成像 . 雷达学报, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [7] 李永祯, 黄大通, 邢世其, 王雪松.  合成孔径雷达干扰技术研究综述 . 雷达学报, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [8] 黄岩, 赵博, 陶明亮, 陈展野, 洪伟.  合成孔径雷达抗干扰技术综述 . 雷达学报, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [9] 王超, 王岩飞, 刘畅, 刘碧丹.  基于参数估计的高分辨率SAR运动目标距离徙动校正方法 . 雷达学报, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [10] 胡程, 邓云开, 田卫明, 曾涛.  地基干涉合成孔径雷达图像非线性大气相位补偿方法 . 雷达学报, 2019, 8(6): 831-840. doi: 10.12000/JR19073
    [11] 李强, 范怀涛.  基于辅助数字高程模型的方位多通道SAR相位失配校正方法 . 雷达学报, 2019, 8(5): 616-623. doi: 10.12000/JR19009
    [12] 邢孟道, 林浩, 陈溅来, 孙光才, 严棒棒.  多平台合成孔径雷达成像算法综述 . 雷达学报, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [13] 范怀涛, 张志敏, 李宁.  基于特征分解的方位向多通道SAR相位失配校正方法 . 雷达学报, 2018, 7(3): 346-354. doi: 10.12000/JR17012
    [14] 孙翔, 宋红军, 王宇, 李宁.  基于高分辨率全极化SAR图像的取向角校正方法 . 雷达学报, 2018, 7(4): 465-474. doi: 10.12000/JR18026
    [15] 唐江文, 邓云凯, 王宇, 赵硕, 李宁.  高分辨率滑动聚束SAR BP成像及其异构并行实现 . 雷达学报, 2017, 6(4): 368-375. doi: 10.12000/JR16053
    [16] 任笑真, 杨汝良.  一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法 . 雷达学报, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [17] 周雨, 王海鹏, 陈思喆.  基于数值散射模拟与模型匹配的SAR自动目标识别研究 . 雷达学报, 2015, 4(6): 666-673. doi: 10.12000/JR15080
    [18] 金添.  叶簇穿透合成孔径雷达增强成像方法 . 雷达学报, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [19] 李春升, 杨威, 王鹏波.  星载SAR 成像处理算法综述 . 雷达学报, 2013, 2(1): 111-122. doi: 10.3724/SP.J.1300.2013.20071
    [20] 吴一戎.  多维度合成孔径雷达成像概念 . 雷达学报, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
  • 加载中
计量
  • 文章访问数:  1782
  • HTML全文浏览量:  286
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-05-20
  • 刊出日期:  2016-10-28

基于扇贝效应校正的改进滑动Mosaic全孔径成像算法

doi: 10.12000/JR16014
    基金项目:

    国家自然科学基金优秀青年基金(61422113)

    作者简介:

    赵团(1990-),男,河南南阳人,中国科学院电子学研究所通信与信息系统专业硕士研究生,研究方向为Mosaic模式合成孔径雷达成像技术。E-mail:zhaotuan@hust.edu.cn;邓云凯(1962-),男,研究员,现为中国科学院电子学研究所研究员,博士生导师,研究方向为星载合成孔径雷达系统设计。E-mail:ykdeng@mail.ie.ac.cn;王宇(1980-),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail:yuwang@mail.ie.ac.cn;李宁(1987-),男,安徽天长人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为多模式合成孔径雷达成像及其应用技术。E-mail:lining_nuaa@163.com;王翔宇(1990-),男,天津人,中国科学院电子学研究所通信与信息系统专业博士研究生,研究方向高分宽测模式信号处理技术。E-mail:wangxiangyu13@mails.ucas.ac.cn。

    通讯作者: 赵团zhaotuan@hust.edu.cn

摘要: 该文提出了一种针对滑动Mosaic模式合成孔径雷达(SAR)的全孔径成像算法,包含了扇贝效应校正和尖脉冲抑制。该方法创新性地通过方位向去斜预处理,来校正由于雷达天线转动引入的天线方向图加权,即扇贝效应校正技术。尖脉冲抑制的主要思想是利用线性预测谱估计算法,通过相邻Burst数据外推来补全Burst之间的空缺数据,从而抑制由多个Burst相干处理所引起的尖脉冲,即矛刺。最后,带宽为200 MHz的C波段机载SAR系统实验处理结果验证了该文所提方法的有效性。

English Abstract

赵团, 邓云凯, 王宇, 李宁, 王翔宇. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
引用本文: 赵团, 邓云凯, 王宇, 李宁, 王翔宇. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014
Citation: Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014
参考文献 (30)

目录

    /

    返回文章
    返回