稀疏微波SAR图像特征分析与目标检测研究

张增辉 郁文贤

张增辉, 郁文贤. 稀疏微波SAR图像特征分析与目标检测研究[J]. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
引用本文: 张增辉, 郁文贤. 稀疏微波SAR图像特征分析与目标检测研究[J]. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
Citation: Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097

稀疏微波SAR图像特征分析与目标检测研究

doi: 10.12000/JR15097
基金项目: 

国家自然科学基金(61331015), 973课题(2010CB731904)

详细信息
    作者简介:

    张增辉(1980-),男,山东金乡人,博士,副研究员,分别于2001年、2003年和2008年获国防科技大学应用数学、计算数学和信息与通信工程专业学士、硕士和博士学位。2008年6月,任国防科大理学院数学与系统科学系讲师;2014年2月,任上海交通大学电子信息与电气工程学院副研究员。主要从事新体制雷达系统、雷达信号处理、压缩感知理论等方面的研究。E-mail:zenghui.zhang@sjtu.edu.cn郁文贤(1964-),男,上海松江人,博士,教授,博士生导师,上海交通大学讲席教授。中国第2代卫星导航系统重大专项测试评估与试验验证专家组专家,高分辨率对地观测系统重大专项专家委员会地面系统组专家,“十二五”总装备部卫星应用技术专业组顾问,总装备部上海市“北斗导航与位置服务”共建重点实验室主任,上海交通大学学术委员会委员,雷达信号处理国防科技重点实验室学术委员会委员,“十一五”国家863计划信息获取与处理技术主题第一、第二届专家组组长,“十一五”总装备部雷达探测技术专业组专家,主要研究方向为先进探测技术和多维信号与信息处理,研究内容包括新型成像系统、微波图像处理和解译、信息融合、目标识别等。E-mail:wxyu@sjtu.edu.cn

    通讯作者:

    郁文贤wxyu@sjtu.edu.cn

Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images

Funds: 

The National Natural Science Foundation of China (61331015), The National Basic Research Program of China (2010CB731904)

  • 摘要: 稀疏微波成像利用观测场景在空时频极化等表示域上的稀疏先验,通过线性综合测量方式获得比传统Nyquist采样低得多的回波数据,使用优化重构算法恢复观测场景微波图像,相对于传统微波成像体制具有诸多优势。在稀疏微波成像体制下,图像的获取和表征均发生了变化,需要在雷达图像理解现有理论和方法的基础上,研究新的特征分析和认知解译理论与方法。该文分析了稀疏SAR图像的统计特性以及点、线、面等特征的变化情况,对于使用空域稀疏模型重构的SAR图像,统计分布退化,适当降低采样率不影响点、线目标的提取精度。在此基础之上,研究了稀疏SAR图像海上舰船目标检测方法,得益于较弱的背景噪声,稀疏SAR图像的目标检测使用简单的阈值处理即可获得较好的检测效果。
  • [1] Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, NC, SciTech Publishing, 2004: 1-512.
    [2] Auer S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D].
    [3] [Ph.D. dissertation], Technische Universitt Mnchen, 2011: 13-15.
    [4] Candes E J. Compressive sampling[C]. International Congress of Mathematics, Madrid, Spain, 2006: 1433-1452.
    [5] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    [6] Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    [7] Baraniuk R G. More is less: Signal processing and the data deluge[J]. Science, 2001, 331(6018): 717-719.
    [8] Baraniuk R G and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Waltham, Massachusetts, 2007: 128-133.
    [9] Herman M A and Strohmer T. High resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
    [10] Gurbuz A C, McClellan J H, and Scott W R Jr. GPR imaging using compressed measurements[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 2008, 2: II-13 -II-16.
    [11] Suksmono A B, Bharata E, Lestari A A, et al.. Compressive stepped-frequency continuous-wave ground penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 665-669.
    [12] YANG J, Thompson J, HUANG X, et al.. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
    [13] Tello M, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
    [14] Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
    [15] Nguyen L H, Tran T, and Thong D. Sparse models and sparse recovery for ultra-wideband SAR applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 940-958.
    [16] Batu O and Certin M. Parameter selection in sparsity-driven SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3040-3050.
    [17] Onhon N O and Certin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Imaging Processing, 2012, 21(4): 2075-2088.
    [18] Stojanovic I, Certin M, and Karl W C. Compressed sensing of monostatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1444-1448.
    [19] FANG J, XU Z, ZHANG B, et al.. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2014, 7(1): 352-363.
    [20] Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
    [21] Certin M, Stojanovic I, Onhon N O, et al.. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40.
    [22] JIANG Q, WANG S, Ziou D, et al.. Ship detection in RADARSAT SAR imagery[C]. IEEE International Conference on Systems, Man and Cybernetics, San Diego, California, USA, 1998, 5: 4562-4566.
    [23] Tison C, Nicolas J-M, Tupin F, et al.. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 42(10): 2046-2057.
    [24] LI H, HONG W, WU Y, et al.. On the empirical-statistical modeling of SAR images with generalized Gamma distribution[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 386-397.
    [25] Henschel M D, Rey M T, Campbell J W M, et al.. Comparison of probability statistics for automated ship detection in SAR imagery[C]. International Conference on Applications of Photonic Technology, Ottawa, Canada, 1998, 3491: 986-991.
    [26] Wackerman C C, Friedman K S, Pichel W G, et al.. Automatic detection of ships in RADARSAT-I SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568-577.
    [27] WANG C, LIAO M, and LI X. Ship detection in SAR image based on the Alpha-stable distribution[J]. Sensors, 2008, 8(8): 4948-4960.
    [28] Frery A C, Correia A H, and Freitas C D. Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3098-3109.
    [29] GAO G, LIU L, ZHAO L, et al.. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697.
    [30] Yeremy M L, Geling G, Rey M, et al.. Results from the Crusade ship detection trial: polarimetric SAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, Ontario, Canada, 2002, 2: 711-713.
    [31] 丘昌镇. 高分辨率SAR图像目标分类特征提取与分析[D].
    [32] [硕士论文],国防科技大学, 2009: 2-4. QIU C. Feature extraction and analysis of high-resolution SAR images for target classification[D].
    [33] [Master dissertation], National University of Defense Technology of China, 2009: 2-4.
    [34] 贺志国, 陆军, 匡纲要. SAR图像特征提取与选择研究[J]. 信号处理, 2008, 24(5): 813-823. HE Z, LU J, and KUANG G. A survey on feature extraction and selection of SAR images[J]. Signal Processing, 2008, 24(5): 813-823.
    [35] 计科峰. SAR图像目标特征提取与分类方法研究[D].
    [36] [博士论文],国防科技大学, 2003: 35-56. JI K Targets feature extraction and classification methods for SAR images[D].
    [37] [Ph.D. dissertation], National University of Defense Technology of China, 2003: 35-56.
    [38] ertin M. Feature-enhanced synthetic aperture radar imaging[D].
    [39] [Ph.D. dissertation], Boston University, 2001: 38-206.
    [40] Certin M, Karl W C, and Castanon D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375-1395.
    [41] Samadi S, Certin M, and Masnadi-Shirazi M A. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821-825.
    [42] ZHANG B, HONG W, and WU Y. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754.
    [43] Tropp J A and Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6): 948-958.
    [44] Donoho D L, Johnstone I M, Koch J C, et al.. Maximum entropy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
    [45] Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
    [46] CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
    [47] DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
    [48] 张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D].
    [49] [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D].
    [50] [Master dissertation], National University of Defense Technology, 2009: 9-48.
    [51] Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.opy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
    [52] Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
    [53] CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
    [54] DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
    [55] 张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D]. [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D]. [Master dissertation], National University of Defense Technology of China, 2009: 9-48.
    [56] Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.
  • [1] 卫扬铠, 曾涛, 陈新亮, 丁泽刚, 范宇杰, 温育涵.  典型线面目标合成孔径雷达参数化成像 . 雷达学报, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [2] 陈世超, 高鹤婷, 罗丰.  基于极化联合特征的海面目标检测方法 . 雷达学报, 2020, 9(4): 664-673. doi: 10.12000/JR20072
    [3] 杜兰, 王兆成, 王燕, 魏迪, 李璐.  复杂场景下单通道SAR目标检测及鉴别研究进展综述 . 雷达学报, 2020, 9(1): 34-54. doi: 10.12000/JR19104
    [4] 许述文, 白晓惠, 郭子薰, 水鹏朗.  海杂波背景下雷达目标特征检测方法的现状与展望 . 雷达学报, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [5] 何其芳, 张群, 罗迎, 李开明.  正弦调频Fourier-Bessel变换及其在微动目标特征提取中的应用 . 雷达学报, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [6] 张群, 胡健, 罗迎, 陈怡君.  微动目标雷达特征提取、成像与识别研究进展 . 雷达学报, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [7] 杨琪, 邓彬, 王宏强, 秦玉亮.  太赫兹雷达目标微动特征提取研究进展 . 雷达学报, 2018, 7(1): 22-45. doi: 10.12000/JR17087
    [8] 陈小龙, 关键, 何友, 于晓涵.  高分辨稀疏表示及其在雷达动目标检测中的应用 . 雷达学报, 2017, 6(3): 239-251. doi: 10.12000/JR16110
    [9] 曾丽娜, 周德云, 李枭扬, 张堃.  基于无训练单样本有效特征的SAR目标检测 . 雷达学报, 2017, 6(2): 177-185. doi: 10.12000/JR16114
    [10] 张新征, 谭志颖, 王亦坚.  基于多特征-多表示融合的SAR图像目标识别 . 雷达学报, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [11] 任笑真, 杨汝良.  一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法 . 雷达学报, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [12] 顾福飞, 张群, 杨秋, 霍文俊, 王敏.  基于NCS算子的大斜视SAR压缩感知成像方法 . 雷达学报, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [13] 杨军, 张群, 罗迎, 邓冬虎.  基于压缩感知的认知雷达多目标跟踪方法 . 雷达学报, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [14] 王璐, 张帆, 李伟, 谢晓明, 胡伟.  基于Gabor滤波器和局部纹理特征提取的SAR目标识别算法 . 雷达学报, 2015, 4(6): 658-665. doi: 10.12000/JR15076
    [15] 韩萍, 王欢.  基于改进的稀疏保持投影的SAR目标特征提取与识别 . 雷达学报, 2015, 4(6): 674-680. doi: 10.12000/JR15068
    [16] 赵永科, 吕晓德.  一种联合优化的无源雷达实时目标检测算法 . 雷达学报, 2014, 3(6): 666-674. doi: 10.12000/JR14005
    [17] 吴一戎, 洪文, 张冰尘, 蒋成龙, 张柘, 赵曜.  稀疏微波成像研究进展(科普类) . 雷达学报, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [18] 时燕, 陈迪荣.  基于小波包算法的压缩传感SAR 成像方法 . 雷达学报, 2013, 2(2): 218-225. doi: 10.3724/SP.J.1300.2012.20068
    [19] 孙志军, 薛磊, 许阳明, 孙志勇.  基于多层编码器的SAR目标及阴影联合特征提取算法 . 雷达学报, 2013, 2(2): 195-202. doi: 10.3724/SP.J.1300.2012.20085
    [20] 仲利华, 胡东辉, 丁赤飚, 张问一.  一种稀疏孔径下大尺寸目标的ISAR 成像方法 . 雷达学报, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
  • 加载中
计量
  • 文章访问数:  2065
  • HTML全文浏览量:  459
  • PDF下载量:  1025
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-15
  • 修回日期:  2015-10-19
  • 刊出日期:  2016-02-28

稀疏微波SAR图像特征分析与目标检测研究

doi: 10.12000/JR15097
    基金项目:

    国家自然科学基金(61331015), 973课题(2010CB731904)

    作者简介:

    张增辉(1980-),男,山东金乡人,博士,副研究员,分别于2001年、2003年和2008年获国防科技大学应用数学、计算数学和信息与通信工程专业学士、硕士和博士学位。2008年6月,任国防科大理学院数学与系统科学系讲师;2014年2月,任上海交通大学电子信息与电气工程学院副研究员。主要从事新体制雷达系统、雷达信号处理、压缩感知理论等方面的研究。E-mail:zenghui.zhang@sjtu.edu.cn郁文贤(1964-),男,上海松江人,博士,教授,博士生导师,上海交通大学讲席教授。中国第2代卫星导航系统重大专项测试评估与试验验证专家组专家,高分辨率对地观测系统重大专项专家委员会地面系统组专家,“十二五”总装备部卫星应用技术专业组顾问,总装备部上海市“北斗导航与位置服务”共建重点实验室主任,上海交通大学学术委员会委员,雷达信号处理国防科技重点实验室学术委员会委员,“十一五”国家863计划信息获取与处理技术主题第一、第二届专家组组长,“十一五”总装备部雷达探测技术专业组专家,主要研究方向为先进探测技术和多维信号与信息处理,研究内容包括新型成像系统、微波图像处理和解译、信息融合、目标识别等。E-mail:wxyu@sjtu.edu.cn

    通讯作者: 郁文贤wxyu@sjtu.edu.cn

摘要: 稀疏微波成像利用观测场景在空时频极化等表示域上的稀疏先验,通过线性综合测量方式获得比传统Nyquist采样低得多的回波数据,使用优化重构算法恢复观测场景微波图像,相对于传统微波成像体制具有诸多优势。在稀疏微波成像体制下,图像的获取和表征均发生了变化,需要在雷达图像理解现有理论和方法的基础上,研究新的特征分析和认知解译理论与方法。该文分析了稀疏SAR图像的统计特性以及点、线、面等特征的变化情况,对于使用空域稀疏模型重构的SAR图像,统计分布退化,适当降低采样率不影响点、线目标的提取精度。在此基础之上,研究了稀疏SAR图像海上舰船目标检测方法,得益于较弱的背景噪声,稀疏SAR图像的目标检测使用简单的阈值处理即可获得较好的检测效果。

English Abstract

张增辉, 郁文贤. 稀疏微波SAR图像特征分析与目标检测研究[J]. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
引用本文: 张增辉, 郁文贤. 稀疏微波SAR图像特征分析与目标检测研究[J]. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
Citation: Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
参考文献 (56)

目录

    /

    返回文章
    返回