HRWS SAR图像舰船目标监视技术研究综述

邢相薇 计科峰 康利鸿 詹明

邢相薇, 计科峰, 康利鸿, 詹明. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107-121. doi: 10.12000/JR14144
引用本文: 邢相薇, 计科峰, 康利鸿, 詹明. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107-121. doi: 10.12000/JR14144
Xing Xiang-wei, Ji Ke-feng, Kang Li-hong, Zhan Ming. Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging[J]. Journal of Radars, 2015, 4(1): 107-121. doi: 10.12000/JR14144
Citation: Xing Xiang-wei, Ji Ke-feng, Kang Li-hong, Zhan Ming. Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging[J]. Journal of Radars, 2015, 4(1): 107-121. doi: 10.12000/JR14144

HRWS SAR图像舰船目标监视技术研究综述

doi: 10.12000/JR14144
基金项目: 

国家自然科学基金(61372163)资助课题

详细信息
    作者简介:

    邢相薇(1985-),男,博士,主要研究方向为SAR图像海洋目标检测与识别、模式识别等。 计科峰(1974-),男,副教授,主要研究方向为SAR图像解译、SAR与AIS关联、特征提取等。

Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging

  • 摘要: 合成孔径雷达(Synthetic Aperture Radar, SAR)是实现舰船目标监视应用的重要遥感手段之一。高分辨率宽测绘带(High Resolution Wide Swath, HRWS) SAR 能够同时获取方位向高分辨率和宽测绘带SAR数据,为SAR图像舰船目标监视带来了新的机遇和挑战。该文综述了国内外SAR图像舰船目标监视技术研究现状,总结了舰船监视对SAR成像系统基本性能要求,结合HRWS SAR成像特点,分析了舰船目标监视面临的关键技术问题,重点介绍了研究小组在HRWS SAR图像舰船目标检测、特征提取、分类识别等关键问题的解决方案和初步研究成果,并指出需进一步研究的方向。
  • [1] Moreira A, et al.. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6-43.
    [2] 邓云凯, 赵凤军, 王宇. 星载SAR 技术的发展趋势及应用浅 析[J]. 雷达学报, 2012, 1(1): 1-10. Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10.
    [3] Ouchi K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sensing, 2013, 5(2): 716-807.
    [4] Colinas J, Seguin G, and Plourde P. Radarsat constellation, moving toward implementation[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 3232-3235.
    [5] 林幼权. 星载高分辨率宽幅成像技术分析[J]. 现代雷达, 2011, 33(1): 1-6. Lin You-quan. Analysis of high-resolution wide-swath technology for spaceborne SAR[J]. Modern Radar, 2011, 33(1): 1-6.
    [6] 赖涛. 星载多通道SAR 高分辨宽测绘带成像方法研究[D].[博士论文], 国防科学技术大学, 2010. Lai Tao. Study on HRWS imaging methods of multi-channel spaceborne SAR[D]. [Ph.D. dissertation], National University of Defense Technology, 2010.
    [7] Suess M, Grafmueller B, and Zahn R. A novel high resolution, wide swath SAR system[C]. IEEE International Geoscience and Remote Sensing Symposium, Sydney, 2001, 3: 1013-1015.
    [8] Li Zhe-fang, Wang Hong-yang, Su Tao, et al.. Generation of wide-swath and high-resoulution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82-86.
    [9] Krieger G, et al.. Advanced concepts for high-resolution wide-swath SAR imaging[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 524-527.
    [10] 刘光炎, 孟喆, 胡学成. 非均匀采样SAR 信号的不模糊成像 与重构[J]. 电子科技大学学报, 2010, 39(6): 850-853. Wang Guang-yan, Meng Zhe, and Hu Xue-cheng. Unambiguous reconstruction and imaging of nonuniform sampling SAR signal[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(6): 850-853.
    [11] Vachon P W. Validation of ship detection by the RADARSAT synthetic aperture radar and the ocean monitoring workstation[J]. Canadian Journal of Remote Sensing, 2000, 26(3): 200-212.
    [12] Pichel W G and Clemente-Colon P. NOAA coastwatch SAR applications and demonstration[J]. Johns Hopkins APL Technical Digest, 2000, 21(1): 49-57.
    [13] Wackerman C C, et al.. Automatic detection of ships in Radarsat-1 SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568-577.
    [14] 张风丽, 张磊, 吴炳方. 欧盟船舶遥感探测技术与系统研究的 进展[J]. 遥感学报, 2007, 11(4): 552-562. Zhang Feng-li, Zhang Lei, and Wu Bing-fang. Progress of ship detection technology and system based on remote sensing technology in European union[J]. Journal of Remote Sensing, 2007, 11(4): 552-562.
    [15] Greidanus H and Kourti N. DECLIMSWPS Status and Plans[R]. Farnborough, UK, 2005.
    [16] Lemoine G, et al.. Evaluation of vessel detection system use for monitoring of fisheries activities[C]. ICES Annual Science Conference, Maastricht, 2006: 1-10.
    [17] Margarit G, Tabasco A, and Gomez C. Maritime situational awareness: the MARISS experience[C]. The 3rd International Workshop on Advances in SAR Oceanography from Envisat, ERS and ESA third party missions, Frascati, Italy, 2010:1-8.
    [18] Margarit G, Jos A, Milans B, et al.. Operational ship monitoring system based on synthetic aperture radar processing[J]. Remote Sensing, 2009, 1(3): 375-392.
    [19] Teutsch M and Saur G. Segmentation and classification of man-made maritime objects in TerraSAR-X images[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 2657-2660.
    [20] Estable S, et al.. Detection and classification of offshore artificial objects in TerraSAR-X images: first outcomes of the DeMarine-DEKO project[C]. Europe Oceans 2009, Bremen, Germany, 1-8.
    [21] 种劲松, 欧阳越, 朱敏慧. 合成孔径雷达海洋目标检测[M]. 北京: 海洋出版社, 2006, 第2 章. Chong Jin-song, Ouyang Yue, and Zhu Min-hui. Ocean Target Detection of Synthetic Aperture Radar[M]. Beijing: Ocean Press, 2006, Chapter 2.
    [22] 张亮. SAR 图像舰船目标检测方法研究[D]. [硕士论文], 国防 科技大学, 2007. Zhang Liang. Research on the methods of ship detection from SAR imagery[D]. [Master dissertation], National University of Defense Technology, 2007.
    [23] 邢相薇. SAR 图像舰船目标检测研究[D]. [硕士论文], 国防科 学技术大学, 2009. Xing Xiang-wei. Research of ship detection on SAR imagery[D]. [Master dissertation], National University of Defense Technology, 2009.
    [24] Xing Xiang-wei, Ji Ke-feng, Zou Huan-xin, et al.. A fast ship detection algorithm in SAR imagery for wide area ocean surveillance[C]. IEEE Radar Conference, Atlanta, USA, 2012: 570-574.
    [25] Xing Xiang-wei, Ji Ke-feng, Zou Huan-xin, et al.. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1562-1566.
    [26] Zhao Zhi, Ji Ke-feng, Xing Xiang-wei, et al.. Ship surveillance by integration of space-borne SAR and AISFurther research[J]. Journal of Navigation, 2014, 67(2): 295-309.
    [27] Hu Can-bin, Ferro-Famil L, and Kuang Gang-yao. Ship discrimination using polarimetric SAR data and coherent time-frequency analysis[J]. Remote Sensing, 2013, 5(12): 6899-6920.
    [28] 殷雄, 王超, 张红, 等. 基于结构特征的高分辨率TerraSAR-X 船舶识别方法研究[J]. 中国图象图形学报, 2012, 17(1): 106-113. Yin Xiong, Wang Chao, Zhang Hong, et al.. Vessel recognition with high resolution TerraSAR-X image based on structure feature[J]. Journal of Image and Graphics, 2012, 17(1): 106-113.
    [29] Wang Chao, Jiang Shao-feng, Zhang Hong et al.. Ship detection for high-resolution SAR images based on feature analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 119-123.
    [30] 张晰, 张杰, 纪永刚, 等. 基于结构特征的SAR船只类型识别 能力分析[J]. 海洋学报, 2010, 32(1): 146-152. Zhang Xi, Zhang Jie, Ji Yong-gang, et al.. The capability analysis of ship classification by structure feature using SAR images[J]. Acta Oceanologica Sinica, 2010, 32(1): 146-152.
    [31] Brusch S, et al.. Ship surveillance with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1092-1113.
    [32] Margarit G, Tabasco A, and Gomez C. Maritime situational awareness: the MARISS experience[C]. The 3rd International Workshop on Advances in SAR Oceanography from Envisat, ERS and ESA Third Party Missions, Frascati (Rome), Italy, 2010.
    [33] Vincius M and da Silva Simes. Ship detection performance predictions for next generation spaceborne synthetic[D].[Ph.D. dissertation], Monterey, California: Naval Postgraduate School, 2001.
    [34] Chaturvedi S K, Yang Chan-su, Song Jung-hwan, et al.. Integrarion of SAR data and AIS report for ship detection and identification[C]. Proceedings SPIE 8372 Ocean Sensing and Monitoring IV, Baltimore, Maryland, 2012: 83720A-83720A.
    [35] Hou Biao, Chen Xing-zhong, and Jiao Li-cheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 811-815.
    [36] Wang Ying-hua and Liu Hong-wei. A hierarchical ship detection scheme for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 50(10): 4173-4184.
    [37] Qin Xian-xiang, Zhou Shi-lin, Zou Huan-xin, et al.. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 806-810.
    [38] Velotto D, Soccorsi M, and Lehner S. Azimuth ambiguities removal for ship detection using full polarimetric X-band SAR data[C]. IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7621-7624.
    [39] Wei Ju-jie, Li Ping-xiang, Yang Jie, et al.. A new automatic ship detection method using L-band polarimetric SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1383-1393.
    [40] Jung C H, et al.. Double-step fast CFAR scheme for multiple target detection in high resolution SAR images[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 1172-1175.
    [41] Yang Tao-li, Li Zhen-fang, Suo Zhi-yong, et al.. Ground moving target indication for high-resolution wide-swath synthetic aperture radar systems[J]. IET Radar, Sonar Navigation, 2014, 8(3): 227-232.
    [42] Ceruti-Maori D and Christoph I S. Detection and imaging of moving objects with high-resolution wide-swath SAR systems[C]. Proceedings of 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 977-980.
    [43] 邢相薇. HRWS SAR 图像舰船目标监视关键技术研究[D]. [博 士论文], 国防科学技术大学, 2014. Xing Xiang-wei. Research on key technologies for ship survelliance based on HRWS SAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2014.
    [44] Xing Xiang-wei, Ji Ke-feng, Zou Huan-xin, et al.. Feature selection and weighted SVM classifier based ship detection in PolSAR imagery [J]. International Journal of Remote Sensing, 2013, 34(22): 7925-7944.
    [45] Xing Xiang-wei, Ji Ke-feng, Zou Huan-xin, et al.. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1562-1566.
  • [1] 罗迎, 倪嘉成, 张群.  基于“数据驱动+智能学习”的合成孔径雷达学习成像 . 雷达学报, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [2] 折小强, 仇晓兰, 雷斌, 张薇, 卢晓军.  一种极化熵结合混合GEV模型的全极化SAR潮间带区域地物分类方法 . 雷达学报, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [3] 王思雨, 高鑫, 孙皓, 郑歆慰, 孙显.  基于卷积神经网络的高分辨率SAR图像飞机目标检测方法 . 雷达学报, 2017, 6(2): 195-203. doi: 10.12000/JR17009
    [4] 王岩飞, 刘畅, 詹学丽, 韩松.  无人机载合成孔径雷达系统技术与应用 . 雷达学报, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [5] 詹学丽, 王岩飞, 王超, 刘碧丹.  一种基于脉冲压缩的机载条带SAR重叠子孔径实时成像算法 . 雷达学报, 2015, 4(2): 199-208. doi: 10.12000/JR14126
    [6] 丁振宇, 谭维贤, 王彦平, 洪文, 吴一戎.  基于波数域子孔径的机载三维SAR偏航角运动误差补偿 . 雷达学报, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [7] 邢孟道, 孙光才, 李学仕.  用于高分辨率宽测绘带SAR系统的SAR/GMTI处理方法研究 . 雷达学报, 2015, 4(4): 375-385. doi: 10.12000/JR15096
    [8] 赵雨露, 张群英, 李超, 纪奕才, 方广有.  视频合成孔径雷达振动误差分析及补偿方案研究 . 雷达学报, 2015, 4(2): 230-239. doi: 10.12000/JR14153
    [9] 詹学丽, 王岩飞, 王超, 李和平.  一种用于合成孔径雷达的数字去斜方法 . 雷达学报, 2015, 4(4): 474-480. doi: 10.12000/JR14117
    [10] 周辉, 赵凤军, 禹卫东, 杨健.  基于非理想运动误差补偿的SAR地面运动目标成像(英文) . 雷达学报, 2015, 4(3): 265-275. doi: 10.12000/JR15024
    [11] 许成斌, 周伟, 丛瑜, 关键.  基于峰值区域的高分辨率极化SAR舰船目标特征分析与鉴别 . 雷达学报, 2015, 4(3): 367-373. doi: 10.12000/JR14093
    [12] 贾丽, 贾鑫, 许小剑, 何永华.  机场场景SAR原始数据模拟 . 雷达学报, 2014, 3(5): 565-573. doi: 10.3724/SP.J.1300.2014.14071
    [13] 杨震, 杨汝良.  HJ-1-C 卫星SAR 系统的内定标 . 雷达学报, 2014, 3(3): 314-319. doi: 10.3724/SP.J.1300.2014.14028
    [14] 李学仕, 孙光才, 邵鹏, 吴玉峰, 邢孟道.  基于数字阵列雷达的同时多模式SAR 成像体制研究 . 雷达学报, 2014, 3(4): 480-489. doi: 10.3724/SP.J.1300.2014.13113
    [15] 李海英, 张珊珊, 李世强, 张华春.  环境一号C 卫星合成孔径雷达相干性分析 . 雷达学报, 2014, 3(3): 320-325. doi: 10.3724/SP.J.1300.2014.13060
    [16] 禹卫东, 杨汝良, 邓云凯, 赵凤军, 雷宏.  HJ-1-C 卫星合成孔径雷达载荷的设计与实现 . 雷达学报, 2014, 3(3): 256-265. doi: 10.3724/SP.J.1300.2014.14020
    [17] 李景山, 温双燕, 王建, 仲利华, 张问一.  基于高性能机群的环境一号C 卫星SAR 图像全分辨率快视实时处理系统设计与实现 . 雷达学报, 2014, 3(3): 332-338. doi: 10.3724/SP.J.1300.2014.13095
    [18] 种劲松, 周晓中.  合成孔径雷达图像海洋内波探测研究综述 . 雷达学报, 2013, 2(4): 406-421. doi: 10.3724/SP.J.1300.2013.13012
    [19] 朱敏慧.  SAR 的海洋动力探测研究及应用浅析 . 雷达学报, 2012, 1(4): 342-352. doi: 10.3724/SP.J.1300.2012.20088
    [20] 汪丙南, 向茂生.  地球同步轨道圆迹SAR 三维分辨特性分析 . 雷达学报, 2012, 1(3): 314-322. doi: 10.3724/SP.J.1300.2012.20044
  • 加载中
计量
  • 文章访问数:  1751
  • HTML全文浏览量:  121
  • PDF下载量:  1917
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-25
  • 修回日期:  2015-01-22
  • 刊出日期:  2015-02-28

HRWS SAR图像舰船目标监视技术研究综述

doi: 10.12000/JR14144
    基金项目:

    国家自然科学基金(61372163)资助课题

    作者简介:

    邢相薇(1985-),男,博士,主要研究方向为SAR图像海洋目标检测与识别、模式识别等。 计科峰(1974-),男,副教授,主要研究方向为SAR图像解译、SAR与AIS关联、特征提取等。

摘要: 合成孔径雷达(Synthetic Aperture Radar, SAR)是实现舰船目标监视应用的重要遥感手段之一。高分辨率宽测绘带(High Resolution Wide Swath, HRWS) SAR 能够同时获取方位向高分辨率和宽测绘带SAR数据,为SAR图像舰船目标监视带来了新的机遇和挑战。该文综述了国内外SAR图像舰船目标监视技术研究现状,总结了舰船监视对SAR成像系统基本性能要求,结合HRWS SAR成像特点,分析了舰船目标监视面临的关键技术问题,重点介绍了研究小组在HRWS SAR图像舰船目标检测、特征提取、分类识别等关键问题的解决方案和初步研究成果,并指出需进一步研究的方向。

English Abstract

邢相薇, 计科峰, 康利鸿, 詹明. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107-121. doi: 10.12000/JR14144
引用本文: 邢相薇, 计科峰, 康利鸿, 詹明. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107-121. doi: 10.12000/JR14144
Xing Xiang-wei, Ji Ke-feng, Kang Li-hong, Zhan Ming. Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging[J]. Journal of Radars, 2015, 4(1): 107-121. doi: 10.12000/JR14144
Citation: Xing Xiang-wei, Ji Ke-feng, Kang Li-hong, Zhan Ming. Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging[J]. Journal of Radars, 2015, 4(1): 107-121. doi: 10.12000/JR14144
参考文献 (45)

目录

    /

    返回文章
    返回