基于柱面扫描近场成像的RCS 测量方法研究

邢曙光 吕晓德 丁赤飚

邢曙光, 吕晓德, 丁赤飚. 基于柱面扫描近场成像的RCS 测量方法研究[J]. 雷达学报, 2015, 4(2): 172-177. doi: 10.12000/JR14100
引用本文: 邢曙光, 吕晓德, 丁赤飚. 基于柱面扫描近场成像的RCS 测量方法研究[J]. 雷达学报, 2015, 4(2): 172-177. doi: 10.12000/JR14100
Xing Shu-guang, Lü Xiao-de, Ding Chi-biao. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning[J]. Journal of Radars, 2015, 4(2): 172-177. doi: 10.12000/JR14100
Citation: Xing Shu-guang, Lü Xiao-de, Ding Chi-biao. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning[J]. Journal of Radars, 2015, 4(2): 172-177. doi: 10.12000/JR14100

基于柱面扫描近场成像的RCS 测量方法研究

doi: 10.12000/JR14100
基金项目: 

中科院科研装备研制项目(Y140110213)资助课题

详细信息
    作者简介:

    邢曙光(1987-),男,安徽阜阳人,中国科学院电子学研究所博士后,主要研究方向为电磁兼容测试、天线、近场测量等。E-mail:shuguangxing@gmail.com 吕晓德(1969-),男,研究员,研究方向为阵列天线、先进雷达新体制、新技术。E-mail:Louee@mail.ie.ac.cn 丁赤飚(1969-),男,陕西西安人,研究员,主要研究方向为信号与信息处理、新体制SAR系统及雷达对抗等。E-mail:cbding@mail.ie.ac.cn

Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

  • 摘要: 该文提出一种基于柱面扫描近场成像的RCS(Radar Cross Section)测量新方法:以理想的各向同性点散射中心模型为核心假设,通过详细的理论推导给出了一种具有通用性的基于柱面扫描近场成像的RCS 测量方法。该方法先得到目标的3 维雷达散射图像,再通过这些等效理想散射中心的散射场叠加获得远处散射场进而给出目标的远场RCS 值。该方法不仅能得到被测目标的3 维雷达散射图像,还能获得一定立体角域的目标远场RCS。相比只能得到2 维雷达散射图以及2 维平面角域RCS 结果的圆迹扫描测试相比,该文所提的柱面扫描测试能得到更多的目标散射信息,具有较强的实用性。仿真结果验证了新方法的可靠性。
  • [1] 吴鹏飞, 许小剑. 地面平面场RCS测量异地定标误差分析[J]. 雷达学报, 2012, 1(1): 58-62. Wu Peng-fei and Xu Xiao-jian. Error analysis of relative calibration for RCS measurement on ground plane range[J]. Journal of Radars, 2012, 1(1): 58-62.
    [2] Amin F, Mueed A, and Xu Jia-dong. Implementation and results of an RCS measurement system in CATR[C]. IEEE Asia-Pacific Conference on Applied Electromagnetics, Melaka, Malaysia, 2012: 262-267.
    [3] Yu Jun-sheng, Liu Xiao-ming, and Yao Yuan. The design and manufacture of a high frequency CATR[C]. Millimeter Waves and THz Technology Workshop, Rome, 2013: 1-2.
    [4] Ford K L, Bennett J C, and Holtby D G. Use of a plane-wave synthesis technique to obtain target RCS from near-field measurements with selective feature extraction capability[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2051-2057.
    [5] Qureshi M A, Schmidt C H, and Eibert T F. Efficient near-field far-filed transformation for nonredundant sampling representation on arbitrary surfaces in near-filed antenna measurements[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2025-2033.
    [6] Gao Chao, Yuan Xiao-feng, and Bai Yang. An approach for extrapolating far field radar cross-section from near field measurement[C]. IEEE International Conference on Green Computing and Communications, Beijing, 2013: 1604-1607.
    [7] Cown B J and Ryan C E. Near-field scattering measurements for determining complex target RCS[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(5): 576-585.
    [8] Odendaal J W and Joubert J. Radar cross measurements using near-field imaging[J]. IEEE Transactions on Instrument Measurement, 1996, 45(6): 948-954.
    [9] Broquetas A, Palau J, Jofre L, et al.. Spherical wave near-field imaging and radar cross-section measurement[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 730-735.
    [10] Vaupel T and Eibert T F. Comparison and application of near-field isar imaging techniques for far-field radar cross section determination[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 144-151.
    [11] Nicholson K J and Wang C H. Improved near-field radar cross-section measurement technique[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1103-1106.
    [12] Li S, Zhu B, Sun H, et al.. NUFFT-Based near-field imaging technique for far-field radar cross section calculation[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 550-553.
    [13] Kobayashi H, Osipov A, Suzuki H, et al.. An improved imagebased near-field-to-far-field transformation for cylindrical scanning surfaces[C]. General Assembly and Scientific Symposium, Istanbul, Turkey, 2011: 1-4.
    [14] Osipov A, Kobayashi H, Suzuki H, et al.. An improved imaged-based circular near-field-to-far-field transformation[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2): 989-993.
  • [1] 宋嘉奇, 陶海红.  近场非圆信号参数快速估计算法 . 雷达学报, 2020, 9(4): 632-639. doi: 10.12000/JR20053
    [2] 郭倩, 王海鹏, 徐丰.  SAR图像飞机目标检测识别进展 . 雷达学报, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [3] 师君, 阙钰佳, 周泽南, 周远远, 张晓玲, 孙铭芳.  近场毫米波三维成像与异物检测方法 . 雷达学报, 2019, 8(5): 578-588. doi: 10.12000/JR18089
    [4] 高敬坤, 邓彬, 秦玉亮, 王宏强, 黎湘.  THz全尺寸凸体粗糙目标雷达回波散射建模与成像仿真 . 雷达学报, 2018, 7(1): 97-107. doi: 10.12000/JR17086
    [5] 吴洋, 白杨, 殷红成, 张良聪.  基于微波倍频源太赫兹频段雷达散射截面测量 . 雷达学报, 2018, 7(1): 147-152. doi: 10.12000/JR17099
    [6] 明婧, 张晓玲, 蒲羚, 师君.  一种新型圆迹阵列三维SAR系统的点扩散函数分析与地面实验结果 . 雷达学报, 2018, 7(6): 770-776. doi: 10.12000/JR18068
    [7] 李世超, 侯培培, 屈俭, 郝丛静, 贾渠, 李刚, 李超.  基于波导缝隙阵列的新型太赫兹频率扫描天线 . 雷达学报, 2018, 7(1): 119-126. doi: 10.12000/JR17098
    [8] 谢朋飞, 张磊, 吴振华.  融合ω-K和BP算法的圆柱扫描毫米波三维成像算法 . 雷达学报, 2018, 7(3): 387-394. doi: 10.12000/JR17112
    [9] 高敬坤, 邓彬, 秦玉亮, 王宏强, 黎湘.  扫描MIMO阵列近场三维成像技术 . 雷达学报, 2018, 7(6): 676-684. doi: 10.12000/JR18102
    [10] 胡程, 刘长江, 曾涛.  双基地前向散射雷达探测与成像 . 雷达学报, 2016, 5(3): 229-243. doi: 10.12000/JR16058
    [11] 白杨, 吴洋, 殷红成, 阙肖峰.  无人机极化散射特性室内测量研究 . 雷达学报, 2016, 5(6): 647-657. doi: 10.12000/JR16032
    [12] 侯丽英, 林赟, 洪文.  干涉圆迹SAR的目标三维重建方法研究 . 雷达学报, 2016, 5(5): 538-547. doi: 10.12000/JR16009
    [13] 李棉全, 施龙飞.  全极化相控阵雷达波束扫描对目标观测极化散射矩阵的影响 . 雷达学报, 2016, 5(2): 200-207. doi: 10.12000/JR16035
    [14] 郭振宇, 林赟, 洪文.  一种基于图像域相位误差估计的圆迹SAR聚焦算法 . 雷达学报, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [15] 洪文, 林赟, 谭维贤, 王彦平, 向茂生.  地球同步轨道圆迹SAR研究 . 雷达学报, 2015, 4(3): 241-253. doi: 10.12000/JR15062
    [16] 王建峰, 林赟, 郭胜龙, 喻玲娟, 洪文.  圆迹SAR的建筑物全方位优化成像方法研究 . 雷达学报, 2015, 4(6): 698-707. doi: 10.12000/JR15069
    [17] 胡卫东.  弱测量问题的信息处理方法初探 . 雷达学报, 2014, 3(4): 396-400. doi: 10.3724/SP.J.1300.2014.14086
    [18] 吴鹏飞, 许小剑.  地面平面场RCS 测量异地定标误差分析 . 雷达学报, 2012, 1(1): 58-62. doi: 10.3724/SP.J.1300.2013.10065
    [19] 汪丙南, 向茂生.  地球同步轨道圆迹SAR 三维分辨特性分析 . 雷达学报, 2012, 1(3): 314-322. doi: 10.3724/SP.J.1300.2012.20044
    [20] 洪文.  圆迹SAR 成像技术研究进展 . 雷达学报, 2012, 1(2): 124-135. doi: 10.3724/SP.J.1300.2012.20046
  • 加载中
计量
  • 文章访问数:  1414
  • HTML全文浏览量:  199
  • PDF下载量:  1916
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-07
  • 修回日期:  2014-10-17
  • 刊出日期:  2015-04-28

基于柱面扫描近场成像的RCS 测量方法研究

doi: 10.12000/JR14100
    基金项目:

    中科院科研装备研制项目(Y140110213)资助课题

    作者简介:

    邢曙光(1987-),男,安徽阜阳人,中国科学院电子学研究所博士后,主要研究方向为电磁兼容测试、天线、近场测量等。E-mail:shuguangxing@gmail.com 吕晓德(1969-),男,研究员,研究方向为阵列天线、先进雷达新体制、新技术。E-mail:Louee@mail.ie.ac.cn 丁赤飚(1969-),男,陕西西安人,研究员,主要研究方向为信号与信息处理、新体制SAR系统及雷达对抗等。E-mail:cbding@mail.ie.ac.cn

摘要: 该文提出一种基于柱面扫描近场成像的RCS(Radar Cross Section)测量新方法:以理想的各向同性点散射中心模型为核心假设,通过详细的理论推导给出了一种具有通用性的基于柱面扫描近场成像的RCS 测量方法。该方法先得到目标的3 维雷达散射图像,再通过这些等效理想散射中心的散射场叠加获得远处散射场进而给出目标的远场RCS 值。该方法不仅能得到被测目标的3 维雷达散射图像,还能获得一定立体角域的目标远场RCS。相比只能得到2 维雷达散射图以及2 维平面角域RCS 结果的圆迹扫描测试相比,该文所提的柱面扫描测试能得到更多的目标散射信息,具有较强的实用性。仿真结果验证了新方法的可靠性。

English Abstract

邢曙光, 吕晓德, 丁赤飚. 基于柱面扫描近场成像的RCS 测量方法研究[J]. 雷达学报, 2015, 4(2): 172-177. doi: 10.12000/JR14100
引用本文: 邢曙光, 吕晓德, 丁赤飚. 基于柱面扫描近场成像的RCS 测量方法研究[J]. 雷达学报, 2015, 4(2): 172-177. doi: 10.12000/JR14100
Xing Shu-guang, Lü Xiao-de, Ding Chi-biao. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning[J]. Journal of Radars, 2015, 4(2): 172-177. doi: 10.12000/JR14100
Citation: Xing Shu-guang, Lü Xiao-de, Ding Chi-biao. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning[J]. Journal of Radars, 2015, 4(2): 172-177. doi: 10.12000/JR14100
参考文献 (14)

目录

    /

    返回文章
    返回