全文下载排行

1
雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。 雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。
2
微动目标的雷达特征提取、成像与识别技术是雷达目标精确识别领域极具发展潜力的研究方向之一。该文首先简要阐述了微动的相关概念,然后综述了近年来微动目标回波建模、微动特征提取、微动目标成像以及基于微动特征的雷达目标分类与识别等方面的研究现状,并介绍了几种典型前沿应用,最后对微动目标雷达特征提取、成像与识别的研究发展趋势进行了展望。 微动目标的雷达特征提取、成像与识别技术是雷达目标精确识别领域极具发展潜力的研究方向之一。该文首先简要阐述了微动的相关概念,然后综述了近年来微动目标回波建模、微动特征提取、微动目标成像以及基于微动特征的雷达目标分类与识别等方面的研究现状,并介绍了几种典型前沿应用,最后对微动目标雷达特征提取、成像与识别的研究发展趋势进行了展望。
3
该文利用深度学习的高维特征泛化学习能力,将卷积神经网络(CNN)用于海上目标微多普勒的检测和分类。首先,在海面微动目标模型的基础上,在实测海杂波背景中分别构建4种类型微动信号的2维时频图,并作为训练和测试数据集;然后,分别采用LeNet, AlexNet和GoogLeNet 3种CNN模型进行二元检测和多种微动类型分类,并进行比较,研究信杂比对检测和分类性能的影响。最后,与传统的支持向量机方法进行比较,结果表明,所提方法能够智能学习微动特征,具有更好的检测和分类性能,可为杂波背景下的雷达动目标检测和识别提供新的技术途径。 该文利用深度学习的高维特征泛化学习能力,将卷积神经网络(CNN)用于海上目标微多普勒的检测和分类。首先,在海面微动目标模型的基础上,在实测海杂波背景中分别构建4种类型微动信号的2维时频图,并作为训练和测试数据集;然后,分别采用LeNet, AlexNet和GoogLeNet 3种CNN模型进行二元检测和多种微动类型分类,并进行比较,研究信杂比对检测和分类性能的影响。最后,与传统的支持向量机方法进行比较,结果表明,所提方法能够智能学习微动特征,具有更好的检测和分类性能,可为杂波背景下的雷达动目标检测和识别提供新的技术途径。
4
太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,简要介绍了太赫兹雷达在预警探测、安检反恐等领域的应用,最后对太赫兹雷达技术的发展方向进行了展望。 太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,简要介绍了太赫兹雷达在预警探测、安检反恐等领域的应用,最后对太赫兹雷达技术的发展方向进行了展望。
5
常规SAR成像,平台沿直线飞行,形成直线型合成孔径,仅能获取2维图像,即3维空间中的观测场景在斜距-方位平面的2维投影,图像具有叠掩、透视缩短、阴影等畸变现象。SAR 3维成像突破了斜距-方位2维频率信息获取,能够获取第3维频率信息,实现3维分辨,可获得观测场景的散射中心在3维空间中的分布,从而解决叠掩问题,消除透视缩短、顶底倒置等几何形变现象,更直观地描述客观场景,已成为国际研究热点。该文介绍SAR 3维成像的概念和主要观测模式,分析该领域国内外研究现状和进展,重点阐述作者所在研究团队的SAR 3维成像研究进展,最后对SAR 3维成像技术进行总结和展望。 常规SAR成像,平台沿直线飞行,形成直线型合成孔径,仅能获取2维图像,即3维空间中的观测场景在斜距-方位平面的2维投影,图像具有叠掩、透视缩短、阴影等畸变现象。SAR 3维成像突破了斜距-方位2维频率信息获取,能够获取第3维频率信息,实现3维分辨,可获得观测场景的散射中心在3维空间中的分布,从而解决叠掩问题,消除透视缩短、顶底倒置等几何形变现象,更直观地描述客观场景,已成为国际研究热点。该文介绍SAR 3维成像的概念和主要观测模式,分析该领域国内外研究现状和进展,重点阐述作者所在研究团队的SAR 3维成像研究进展,最后对SAR 3维成像技术进行总结和展望。
6
深度卷积网络等深度学习算法变革了计算机视觉领域,在多种应用上的效果都超过了以往传统图像处理算法。该文简要回顾了将深度学习应用在SAR图像目标识别与地物分类中的工作。利用深度卷积网络从SAR图像中自动学习多层的特征表征,再利用学习到的特征进行目标检测与目标分类。将深度卷积网络应用于SAR目标分类数据集MSTAR上,10类目标平均分类精度达到了99%。针对带相位的极化SAR图像,该文提出了复数深度卷积网络,将该算法应用于全极化SAR图像地物分类,Flevoland 15类地物平均分类精度达到了95%。 深度卷积网络等深度学习算法变革了计算机视觉领域,在多种应用上的效果都超过了以往传统图像处理算法。该文简要回顾了将深度学习应用在SAR图像目标识别与地物分类中的工作。利用深度卷积网络从SAR图像中自动学习多层的特征表征,再利用学习到的特征进行目标检测与目标分类。将深度卷积网络应用于SAR目标分类数据集MSTAR上,10类目标平均分类精度达到了99%。针对带相位的极化SAR图像,该文提出了复数深度卷积网络,将该算法应用于全极化SAR图像地物分类,Flevoland 15类地物平均分类精度达到了95%。
7
微动特征是空间目标识别的重要特征信息之一。然而,现有的多功能多输入多输出(Multi-Input Multi-Output, MIMO)雷达通常需要在完成目标搜索和跟踪任务之后为目标微动特征提取分配大量连续的时间资源,导致目标识别实时性能和雷达系统整体工作性能均不高。针对该问题,该文提出了一种基于跟踪脉冲的MIMO雷达多目标微动特征提取方法。首先依据各目标的方位信息对MIMO雷达发射波形进行设计,为不同方向目标同时发射跟踪脉冲;在此基础上,综合考虑目标微动特征提取性能以及目标跟踪性能的需求,对跟踪脉冲的发射时间序列进行优化设计;最后,直接利用窄带跟踪脉冲实现对不同方向目标微动特征的同时提取,无需再为目标微动特征提取分配额外的时间资源,有效提升目标识别实时性和雷达工作效率。仿真实验表明,在信噪比大于–10 dB时,所提方法能够实现多目标微动特征的准确提取,具有良好的有效性和鲁棒性。 微动特征是空间目标识别的重要特征信息之一。然而,现有的多功能多输入多输出(Multi-Input Multi-Output, MIMO)雷达通常需要在完成目标搜索和跟踪任务之后为目标微动特征提取分配大量连续的时间资源,导致目标识别实时性能和雷达系统整体工作性能均不高。针对该问题,该文提出了一种基于跟踪脉冲的MIMO雷达多目标微动特征提取方法。首先依据各目标的方位信息对MIMO雷达发射波形进行设计,为不同方向目标同时发射跟踪脉冲;在此基础上,综合考虑目标微动特征提取性能以及目标跟踪性能的需求,对跟踪脉冲的发射时间序列进行优化设计;最后,直接利用窄带跟踪脉冲实现对不同方向目标微动特征的同时提取,无需再为目标微动特征提取分配额外的时间资源,有效提升目标识别实时性和雷达工作效率。仿真实验表明,在信噪比大于–10 dB时,所提方法能够实现多目标微动特征的准确提取,具有良好的有效性和鲁棒性。
8
微动是指目标或目标上某些部件沿雷达视线方向的小幅、非匀速运动。通过对微动目标进行逆合成孔径雷达(ISAR)高分辨3维成像,能够获得其结构和运动信息,从而为微动目标检测、跟踪、分类与识别提供重要依据,并在空间态势感知与防空反导中发挥着重要作用。由于微动目标运动形式复杂、回波非平稳性强,现有的参数化ISAR成像方法已经不再适用。针对该问题,该文提出基于散射中心航迹矩阵分解的微动目标高分辨3维成像方法。该方法首先生成距离-瞬时多普勒(RID)像序列,利用watershed图像分割方法提取RID像的散射中心支撑域,并基于最小欧氏距离准则实现航迹关联。然后,针对散射中心航迹关联时瞬时斜距估计精度受距离分辨率影响等问题,进一步提出基于现代谱估计的散射中心航迹矩阵精估计方法。最后,通过带约束的航迹矩阵分解实现微动目标的高分辨3维成像。仿真结果表明,该文所提的成像方法能够有效实现章动等复杂微动目标的高分辨3维成像。 微动是指目标或目标上某些部件沿雷达视线方向的小幅、非匀速运动。通过对微动目标进行逆合成孔径雷达(ISAR)高分辨3维成像,能够获得其结构和运动信息,从而为微动目标检测、跟踪、分类与识别提供重要依据,并在空间态势感知与防空反导中发挥着重要作用。由于微动目标运动形式复杂、回波非平稳性强,现有的参数化ISAR成像方法已经不再适用。针对该问题,该文提出基于散射中心航迹矩阵分解的微动目标高分辨3维成像方法。该方法首先生成距离-瞬时多普勒(RID)像序列,利用watershed图像分割方法提取RID像的散射中心支撑域,并基于最小欧氏距离准则实现航迹关联。然后,针对散射中心航迹关联时瞬时斜距估计精度受距离分辨率影响等问题,进一步提出基于现代谱估计的散射中心航迹矩阵精估计方法。最后,通过带约束的航迹矩阵分解实现微动目标的高分辨3维成像。仿真结果表明,该文所提的成像方法能够有效实现章动等复杂微动目标的高分辨3维成像。
9
无人机的日益流行在带来便利的同时也造成了潜在的威胁,对无人机进行分类识别具有重要意义。雷达微多普勒信号能够区分不同类型的无人机。为了提高基于微多普勒的无人机分类的鲁棒性,该文提出了一种多角度雷达观测微动特征融合的无人机识别方法。首先利用多部雷达同时从不同角度观测目标;然后对采集的雷达数据分别进行短时傅里叶变换(Short-Time Fourier Transform, STFT),得到时频谱图;接着利用主成分分析(Principal Component Analysis, PCA)从时频谱图中提取特征,将两个不同角度雷达传感器得到的特征融合在一起;最后利用支持向量机(Support Vector Machine, SVM)进行训练与分类识别。基于实际雷达数据的实验结果表明:两个雷达传感器观测融合得到的分类精度优于单个雷达传感器的分类精度,最终识别准确率较仅利用X波段雷达传感器方法提升了5%以上。 无人机的日益流行在带来便利的同时也造成了潜在的威胁,对无人机进行分类识别具有重要意义。雷达微多普勒信号能够区分不同类型的无人机。为了提高基于微多普勒的无人机分类的鲁棒性,该文提出了一种多角度雷达观测微动特征融合的无人机识别方法。首先利用多部雷达同时从不同角度观测目标;然后对采集的雷达数据分别进行短时傅里叶变换(Short-Time Fourier Transform, STFT),得到时频谱图;接着利用主成分分析(Principal Component Analysis, PCA)从时频谱图中提取特征,将两个不同角度雷达传感器得到的特征融合在一起;最后利用支持向量机(Support Vector Machine, SVM)进行训练与分类识别。基于实际雷达数据的实验结果表明:两个雷达传感器观测融合得到的分类精度优于单个雷达传感器的分类精度,最终识别准确率较仅利用X波段雷达传感器方法提升了5%以上。
10
该文提出了一种基于卷积神经网络(CNN)及有效图像预处理的合成孔径雷达(SAR)图像变化检测方法。为了验证方法的有效性,以2011年日本仙台地区地震导致的城区变化为例进行了研究。在预处理中分别利用DEM模型以及Otsu方法对SAR图像中的山体和水体进行了提取和去除。利用多层卷积神经网络从SAR图像中自动学习目标特征,再利用学习到的特征对图像进行分类。训练集和测试集的分类精度分别达到了98.25%和97.86%。利用图像差值法得到分类后的SAR图像变化检测结果,并验证了该方法的准确性和有效性。另外,文中给出了基于CNN的变化检测方法和传统方法的对比结果。结果表明,相对于传统方法,基于CNN的变化检测方法具有更高的检测精度。 该文提出了一种基于卷积神经网络(CNN)及有效图像预处理的合成孔径雷达(SAR)图像变化检测方法。为了验证方法的有效性,以2011年日本仙台地区地震导致的城区变化为例进行了研究。在预处理中分别利用DEM模型以及Otsu方法对SAR图像中的山体和水体进行了提取和去除。利用多层卷积神经网络从SAR图像中自动学习目标特征,再利用学习到的特征对图像进行分类。训练集和测试集的分类精度分别达到了98.25%和97.86%。利用图像差值法得到分类后的SAR图像变化检测结果,并验证了该方法的准确性和有效性。另外,文中给出了基于CNN的变化检测方法和传统方法的对比结果。结果表明,相对于传统方法,基于CNN的变化检测方法具有更高的检测精度。
11
复杂背景下稳健高效的低可观测动目标检测始终是雷达信号处理领域的研究热点和难点,一方面,强杂波背景和目标复杂运动使得信号微弱,时频域难以区分;另一方面,相参积累算法复杂,长时间积累运算量较大,如何利用有限的雷达资源提高雷达探测性能成为亟需解决的问题。高分辨稀疏表示技术从信号稀疏性角度出发区分杂波和动目标,是传统变换域动目标检测技术的拓展,具有高时频分辨率、对噪声不敏感、稳健性高以及适于多分量信号分析的优势,有广阔应用前景。该文重点从应用角度进行归纳总结,系统回顾了雷达动目标检测的常规方法,然后对稀疏表示在雷达杂波特性分析、抑制、动目标检测、特征提取、时频分析等方面的应用进行了初步总结和归纳,对研究方向进行展望,最后结合实测数据和已有成果给出了部分处理结果。 复杂背景下稳健高效的低可观测动目标检测始终是雷达信号处理领域的研究热点和难点,一方面,强杂波背景和目标复杂运动使得信号微弱,时频域难以区分;另一方面,相参积累算法复杂,长时间积累运算量较大,如何利用有限的雷达资源提高雷达探测性能成为亟需解决的问题。高分辨稀疏表示技术从信号稀疏性角度出发区分杂波和动目标,是传统变换域动目标检测技术的拓展,具有高时频分辨率、对噪声不敏感、稳健性高以及适于多分量信号分析的优势,有广阔应用前景。该文重点从应用角度进行归纳总结,系统回顾了雷达动目标检测的常规方法,然后对稀疏表示在雷达杂波特性分析、抑制、动目标检测、特征提取、时频分析等方面的应用进行了初步总结和归纳,对研究方向进行展望,最后结合实测数据和已有成果给出了部分处理结果。
12
阵列合成孔径雷达(ASAR)具备3维成像能力,是3维SAR成像领域的研究热点之一。该文针对线阵SAR在高分辨率成像方面和圆周SAR在旁瓣抑制方面的问题,提出一种新型圆迹阵列合成孔径雷达(CASAR)系统用于3维高分辨率雷达成像。首先推导基于CASAR系统的点扩散函数模型,从理论上分析圆迹阵列这一新型构型在3维成像中的优势。在此基础上构建原型CASAR实验系统,通过点扩散函数仿真实验和室外实测3维CASAR成像实验验证了3维CASAR成像的有效性,与线阵SAR和圆周SAR实验结果相比,证明CASAR系统可获得3维高分辨率SAR图像以及有效的旁瓣抑制能力。 阵列合成孔径雷达(ASAR)具备3维成像能力,是3维SAR成像领域的研究热点之一。该文针对线阵SAR在高分辨率成像方面和圆周SAR在旁瓣抑制方面的问题,提出一种新型圆迹阵列合成孔径雷达(CASAR)系统用于3维高分辨率雷达成像。首先推导基于CASAR系统的点扩散函数模型,从理论上分析圆迹阵列这一新型构型在3维成像中的优势。在此基础上构建原型CASAR实验系统,通过点扩散函数仿真实验和室外实测3维CASAR成像实验验证了3维CASAR成像的有效性,与线阵SAR和圆周SAR实验结果相比,证明CASAR系统可获得3维高分辨率SAR图像以及有效的旁瓣抑制能力。
13
合成孔径雷达(SAR)与通信一体化可提升SAR的信息交互能力,实现探测数据实时传输,提升系统整体性能。一体化平台在工作过程中,将引入多普勒偏移和多径效应,这使得广泛研究的正交频分复用(OFDM)一体化波形的正交性无法保持,成像与通信性能受限。该文提出利用滤波器组多载波(FBMC)波形实现SAR与通信一体化,一方面,FBMC波形对子载波间的正交性要求低,可以对抗多普勒与多径效应,另一方面,FBMC波形不采用循环前缀(CP),因此可以避免出现虚假目标,提升了频谱利用率。该文分析了FBMC波形的一体化性能,针对一体化系统中的多径效应与多普勒偏移对FBMC波形的影响展开了研究,并针对大频偏的情况提出了适用于FBMC一体化波形的多普勒补偿算法。基于FBMC的SAR与通信一体化波形在宽测绘带SAR与通信一体化系统中有更好的性能,仿真试验验证了该结论。 合成孔径雷达(SAR)与通信一体化可提升SAR的信息交互能力,实现探测数据实时传输,提升系统整体性能。一体化平台在工作过程中,将引入多普勒偏移和多径效应,这使得广泛研究的正交频分复用(OFDM)一体化波形的正交性无法保持,成像与通信性能受限。该文提出利用滤波器组多载波(FBMC)波形实现SAR与通信一体化,一方面,FBMC波形对子载波间的正交性要求低,可以对抗多普勒与多径效应,另一方面,FBMC波形不采用循环前缀(CP),因此可以避免出现虚假目标,提升了频谱利用率。该文分析了FBMC波形的一体化性能,针对一体化系统中的多径效应与多普勒偏移对FBMC波形的影响展开了研究,并针对大频偏的情况提出了适用于FBMC一体化波形的多普勒补偿算法。基于FBMC的SAR与通信一体化波形在宽测绘带SAR与通信一体化系统中有更好的性能,仿真试验验证了该结论。
14
该文对信息超材料,包括数字超材料、编码超材料、以及可编程超材料的研究进展及其在太赫兹领域的应用进行了综述,从原理分析、数值仿真、样品制备、实际应用等多个角度介绍了信息超材料对电磁波全面而灵活的调控能力,着重探讨了编码超材料在太赫兹领域的发展以及应用,最后阐述了现场可编程超材料的原理及其在构建新型成像系统、新概念雷达中的应用。信息超材料与超表面对太赫兹波束的灵活调控可用于制作波束分离、低雷达散射截面等多种功能器件,为太赫兹频段电磁波的实时调控开辟了新的途径。 该文对信息超材料,包括数字超材料、编码超材料、以及可编程超材料的研究进展及其在太赫兹领域的应用进行了综述,从原理分析、数值仿真、样品制备、实际应用等多个角度介绍了信息超材料对电磁波全面而灵活的调控能力,着重探讨了编码超材料在太赫兹领域的发展以及应用,最后阐述了现场可编程超材料的原理及其在构建新型成像系统、新概念雷达中的应用。信息超材料与超表面对太赫兹波束的灵活调控可用于制作波束分离、低雷达散射截面等多种功能器件,为太赫兹频段电磁波的实时调控开辟了新的途径。
15
雷达目标分类在军事和民用领域发挥着重要作用。极限学习机(Extreme Learning Machine, ELM)因其学习速度快、泛化能力强而被广泛应用于分类任务中。然而,由于其浅层结构,ELM无法有效地捕获数据深层抽象信息。虽然许多研究者已经提出了深度极限学习机,它可以用于自动学习目标高级特征表示,但是当训练样本有限时,模型容易陷入过拟合。为解决此问题,该文提出一种基于Dropout约束的深度极限学习机雷达目标分类算法,在雷达测量数据上的实验结果表明所提算法在分类准确率上达到93.37%,相较栈式自动编码器算法和传统深度极限学习机算法分别提高了5.25%和8.16%,验证了算法有效性。 雷达目标分类在军事和民用领域发挥着重要作用。极限学习机(Extreme Learning Machine, ELM)因其学习速度快、泛化能力强而被广泛应用于分类任务中。然而,由于其浅层结构,ELM无法有效地捕获数据深层抽象信息。虽然许多研究者已经提出了深度极限学习机,它可以用于自动学习目标高级特征表示,但是当训练样本有限时,模型容易陷入过拟合。为解决此问题,该文提出一种基于Dropout约束的深度极限学习机雷达目标分类算法,在雷达测量数据上的实验结果表明所提算法在分类准确率上达到93.37%,相较栈式自动编码器算法和传统深度极限学习机算法分别提高了5.25%和8.16%,验证了算法有效性。
16
该文论述了利用数字电视外辐射源雷达开展多旋翼无人机微多普勒效应实验的研究结果。首先建立了双基地外辐射源雷达无人机微动信号模型,接着简要阐述了微动信号提取的相关关键技术,最后重点介绍了实验开展情况,包括实验场景配置、无人机微多普勒效应实验典型结果与分析。实验结果与无人机运动参数的理论分析相符合,证实了利用数字电视外辐射源雷达实现多旋翼无人机微多普勒效应探测的技术可行性。 该文论述了利用数字电视外辐射源雷达开展多旋翼无人机微多普勒效应实验的研究结果。首先建立了双基地外辐射源雷达无人机微动信号模型,接着简要阐述了微动信号提取的相关关键技术,最后重点介绍了实验开展情况,包括实验场景配置、无人机微多普勒效应实验典型结果与分析。实验结果与无人机运动参数的理论分析相符合,证实了利用数字电视外辐射源雷达实现多旋翼无人机微多普勒效应探测的技术可行性。
17
近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。 近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。
18
最近涌现的临近空间高动态飞行器存在超高速、高机动、超远程、低RCS、等离子鞘套、电离层污染、宇宙射线干扰等显著区别于常规目标的特性。基于空天地不同平台雷达临近空间高动态飞行器通用信号建模,该文提出了分布式组网、多维度、变模型、多目标、微运动、非参数化等应用的检测前聚焦雷达信号处理新方法,通过多维参数空间相参积累和能量聚焦,克服尺度伸缩、任意运动、孔径渡越、稀疏子带、跨距离、跨多普勒和跨波束等效应,有效抑制电离层污染和有源干扰,显著提高临近空间高动态飞行器的目标检测、参数测量、聚焦成像、机动跟踪、特征提取和属性识别等环节性能。该文方法适用于临近空间高动态目标也适用于探测常规雷达目标,适用于新体制雷达也适用于常规体制雷达,具备重要的学术理论价值和广阔的应用前景。 最近涌现的临近空间高动态飞行器存在超高速、高机动、超远程、低RCS、等离子鞘套、电离层污染、宇宙射线干扰等显著区别于常规目标的特性。基于空天地不同平台雷达临近空间高动态飞行器通用信号建模,该文提出了分布式组网、多维度、变模型、多目标、微运动、非参数化等应用的检测前聚焦雷达信号处理新方法,通过多维参数空间相参积累和能量聚焦,克服尺度伸缩、任意运动、孔径渡越、稀疏子带、跨距离、跨多普勒和跨波束等效应,有效抑制电离层污染和有源干扰,显著提高临近空间高动态飞行器的目标检测、参数测量、聚焦成像、机动跟踪、特征提取和属性识别等环节性能。该文方法适用于临近空间高动态目标也适用于探测常规雷达目标,适用于新体制雷达也适用于常规体制雷达,具备重要的学术理论价值和广阔的应用前景。
19
频率分集阵(Frequency Diverse Array, FDA)雷达不同天线单元的发射载频存在微小的差异,从而带来了发射方向图距离角度时间依赖的特性,这一特性提供了FDA雷达新的信息和信号处理灵活度,也带了新的技术问题。该文综述了FDA天线技术及雷达应用的相关研究进展,并重点从雷达系统理论与工程应用的角度,着重分析了相干FDA雷达和正交FDA雷达两种体制的技术特点,指出FDA雷达在抗干扰、抗模糊中的应用优势,梳理了FDA雷达技术的难点和研究方向。 频率分集阵(Frequency Diverse Array, FDA)雷达不同天线单元的发射载频存在微小的差异,从而带来了发射方向图距离角度时间依赖的特性,这一特性提供了FDA雷达新的信息和信号处理灵活度,也带了新的技术问题。该文综述了FDA天线技术及雷达应用的相关研究进展,并重点从雷达系统理论与工程应用的角度,着重分析了相干FDA雷达和正交FDA雷达两种体制的技术特点,指出FDA雷达在抗干扰、抗模糊中的应用优势,梳理了FDA雷达技术的难点和研究方向。
20
高分三号作为我国首颗民用C波段多极化多成像模式SAR卫星,其全天时全天候观测特点,在国家海域使用动态监测中具有较大优势。该文在分析国家海域使用遥感监测的基础上,探讨GF-3号 SAR成像模式和标准预处理方式,并以海岸线围填海、海水养殖等典型海域使用要素为例,给出GF-3不同成像模式在海域使用要素识别分类的部分研究结果,并与现有方法进行对比分析,最后展望了进一步研究方向。 高分三号作为我国首颗民用C波段多极化多成像模式SAR卫星,其全天时全天候观测特点,在国家海域使用动态监测中具有较大优势。该文在分析国家海域使用遥感监测的基础上,探讨GF-3号 SAR成像模式和标准预处理方式,并以海岸线围填海、海水养殖等典型海域使用要素为例,给出GF-3不同成像模式在海域使用要素识别分类的部分研究结果,并与现有方法进行对比分析,最后展望了进一步研究方向。