全文下载排行

1
近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。 近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。
2
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。 星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
3
合成孔径雷达3维成像技术可以消除目标和地形在2维图像上产生的严重混叠,显著提升目标识别和3维建模能力,已经成为当前SAR发展的重要趋势。合成孔径雷达3维成像技术经过了数十年的发展,已提出多种技术体制。该文系统性回顾了SAR 3维成像技术领域的发展过程,深入分析了现有SAR 3维成像技术的特点;指出了SAR回波及图像中蕴含的未被现有技术利用的3维信息,提出“合成孔径雷达微波视觉3维成像”的新概念和新思路,将SAR成像方法与微波散射机制和图像视觉语义有机融合,形成SAR微波视觉3维成像理论与方法,实现高效能、低成本的SAR 3维成像。该文重点阐述了SAR微波视觉3维成像的概念、目标和关键科学问题,并给出了初步的技术途径,为SAR 3维成像提供了新的技术思路。 合成孔径雷达3维成像技术可以消除目标和地形在2维图像上产生的严重混叠,显著提升目标识别和3维建模能力,已经成为当前SAR发展的重要趋势。合成孔径雷达3维成像技术经过了数十年的发展,已提出多种技术体制。该文系统性回顾了SAR 3维成像技术领域的发展过程,深入分析了现有SAR 3维成像技术的特点;指出了SAR回波及图像中蕴含的未被现有技术利用的3维信息,提出“合成孔径雷达微波视觉3维成像”的新概念和新思路,将SAR成像方法与微波散射机制和图像视觉语义有机融合,形成SAR微波视觉3维成像理论与方法,实现高效能、低成本的SAR 3维成像。该文重点阐述了SAR微波视觉3维成像的概念、目标和关键科学问题,并给出了初步的技术途径,为SAR 3维成像提供了新的技术思路。
4

极化合成孔径雷达(SAR)能够获取目标的全极化信息,在对地观测、灾害评估、侦察监视等民用和军用领域得到广泛应用。国内主要高校、中科院、工业部门和用户单位在该领域开展了卓有成效的工作,取得一大批标志性研究成果。该文简要综述了极化SAR成像解译识别领域的主要研究进展。在解译层面,主要介绍了极化目标分解和极化旋转域解译等理论方法的研究进展。在应用层面,结合研究团队的工作,探讨了上述理论方法在舰船检测、地物分类和建筑物损毁评估等领域的应用成效。最后,对极化SAR目标解译识别技术的研究进行了展望。

极化合成孔径雷达(SAR)能够获取目标的全极化信息,在对地观测、灾害评估、侦察监视等民用和军用领域得到广泛应用。国内主要高校、中科院、工业部门和用户单位在该领域开展了卓有成效的工作,取得一大批标志性研究成果。该文简要综述了极化SAR成像解译识别领域的主要研究进展。在解译层面,主要介绍了极化目标分解和极化旋转域解译等理论方法的研究进展。在应用层面,结合研究团队的工作,探讨了上述理论方法在舰船检测、地物分类和建筑物损毁评估等领域的应用成效。最后,对极化SAR目标解译识别技术的研究进行了展望。

5
该文从成像结果表征、孔径流形、信号通道、系统形态、观测方向、处理方法、实现机理、目标识别等方面剖析了雷达对地成像技术的多向演化态势,并试图从宏观的视角和大的时间尺度,分析和认识雷达对地成像技术发展的内外因素和发展规律,推演预测未来发展方向,以期为把握雷达对地成像技术发展的时代脉络和宏观趋势、契合需求和引领创新、推动发展和促进应用,提供另类的观察视角和思维方式。 该文从成像结果表征、孔径流形、信号通道、系统形态、观测方向、处理方法、实现机理、目标识别等方面剖析了雷达对地成像技术的多向演化态势,并试图从宏观的视角和大的时间尺度,分析和认识雷达对地成像技术发展的内外因素和发展规律,推演预测未来发展方向,以期为把握雷达对地成像技术发展的时代脉络和宏观趋势、契合需求和引领创新、推动发展和促进应用,提供另类的观察视角和思维方式。
6
合成孔径雷达(SAR)得益于其全天时全天候、高分辨率的工作模式,在最近几十年吸引了全球雷达学者的目光。作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果,因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对不同的干扰样式、干扰来源、干扰散射机理、雷达天线配置、目标特性等合成孔径雷达抗干扰及高分辨成像的关键要素和主要思路进行了总结梳理,并依照干扰对抗算法的本质,对近些年代表性的合成孔径雷达对抗压制干扰和欺骗干扰算法的文献进行介绍和归纳,旨在为以后的研究提供一定的参考。 合成孔径雷达(SAR)得益于其全天时全天候、高分辨率的工作模式,在最近几十年吸引了全球雷达学者的目光。作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果,因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对不同的干扰样式、干扰来源、干扰散射机理、雷达天线配置、目标特性等合成孔径雷达抗干扰及高分辨成像的关键要素和主要思路进行了总结梳理,并依照干扰对抗算法的本质,对近些年代表性的合成孔径雷达对抗压制干扰和欺骗干扰算法的文献进行介绍和归纳,旨在为以后的研究提供一定的参考。
7
SAR作为一种主动式微波成像传感器,以其全天时、全天候、作用距离远等独特的技术优势,成为当前对地观测的主要手段之一,在军事和民用领域发挥着十分重要的作用。随着SAR遥感技术的发展,高分辨率、高质量的SAR图像不断产生,仅依靠人工手段对感兴趣的目标进行检测、识别费时费力,因此亟需发展SAR自动目标识别(ATR)技术。典型的SAR ATR系统主要包括检测、鉴别、分类/识别3个阶段,其中,检测和鉴别阶段是整个SAR ATR系统的基础,是国内外雷达界一直开展的SAR应用基础研究之一。针对单通道SAR图像,简单场景下目标检测与鉴别已经取得了不错的结果;而在复杂场景下,杂波散射强度相对高、杂波背景非均匀和目标散射强度相对弱、分布密集等情况,使得SAR目标检测和鉴别依然是一个难点。该文对近十年左右复杂场景下单通道SAR目标检测及鉴别方法的研究进展进行了归纳总结,并分析了各类方法的特点及存在的问题,展望了未来复杂场景下单通道SAR目标检测与鉴别方法的发展趋势。 SAR作为一种主动式微波成像传感器,以其全天时、全天候、作用距离远等独特的技术优势,成为当前对地观测的主要手段之一,在军事和民用领域发挥着十分重要的作用。随着SAR遥感技术的发展,高分辨率、高质量的SAR图像不断产生,仅依靠人工手段对感兴趣的目标进行检测、识别费时费力,因此亟需发展SAR自动目标识别(ATR)技术。典型的SAR ATR系统主要包括检测、鉴别、分类/识别3个阶段,其中,检测和鉴别阶段是整个SAR ATR系统的基础,是国内外雷达界一直开展的SAR应用基础研究之一。针对单通道SAR图像,简单场景下目标检测与鉴别已经取得了不错的结果;而在复杂场景下,杂波散射强度相对高、杂波背景非均匀和目标散射强度相对弱、分布密集等情况,使得SAR目标检测和鉴别依然是一个难点。该文对近十年左右复杂场景下单通道SAR目标检测及鉴别方法的研究进展进行了归纳总结,并分析了各类方法的特点及存在的问题,展望了未来复杂场景下单通道SAR目标检测与鉴别方法的发展趋势。
8
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。 飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
9
近年来,星载InSAR技术在地质灾害监测领域显示出越来越大的应用潜力。该文首先介绍了InSAR形变监测的原理;然后系统性回顾了InSAR技术的发展,分析了差分InSAR、时序InSAR等方法的技术特点和适用范围;进而从地质灾害监测应用的角度分析了InSAR技术在地震、滑坡、水利工程、地面沉降等领域的应用现状和发展趋势;最后总结了当前地灾监测应用中InSAR技术在大气效应校正、复杂地区形变信息获取、多维形变信息获取中的关键问题,以期服务于地质灾害动态监测与防治工作。从当前InSAR技术在地质灾害监测的应用来看,该技术正处在广泛的业务应用阶段,随着未来星载SAR卫星系统的发展和行业的驱动,必将发展成为一项成熟的高精度对地观测技术,对地质灾害监测产生巨大的影响。 近年来,星载InSAR技术在地质灾害监测领域显示出越来越大的应用潜力。该文首先介绍了InSAR形变监测的原理;然后系统性回顾了InSAR技术的发展,分析了差分InSAR、时序InSAR等方法的技术特点和适用范围;进而从地质灾害监测应用的角度分析了InSAR技术在地震、滑坡、水利工程、地面沉降等领域的应用现状和发展趋势;最后总结了当前地灾监测应用中InSAR技术在大气效应校正、复杂地区形变信息获取、多维形变信息获取中的关键问题,以期服务于地质灾害动态监测与防治工作。从当前InSAR技术在地质灾害监测的应用来看,该技术正处在广泛的业务应用阶段,随着未来星载SAR卫星系统的发展和行业的驱动,必将发展成为一项成熟的高精度对地观测技术,对地质灾害监测产生巨大的影响。
10
对感兴趣目标的数量、位置、型号等参数信息的精确获取一直是合成孔径雷达(SAR)技术中最为重要的研究内容之一。现阶段的SAR信息处理主要分为成像和解译两大部分,两者的研究相对独立。SAR成像和解译各自开发了大量算法,复杂度越来越高,但SAR解译并未因成像分辨率提升而变得简单,特别是对重点目标识别率低的问题并未从本质上得以解决。针对上述问题,该文从SAR成像解译一体化角度出发,尝试利用“数据驱动+智能学习”的方法提升机载SAR的信息处理能力。首先分析了基于“数据驱动+智能学习”方法的SAR成像解译一体化的可行性及现阶段存在的主要问题;在此基础上,提出一种“数据驱动+智能学习”的SAR学习成像方法,给出了学习成像框架、网络参数选取方法、网络训练方法和初步的仿真结果,并分析了需要解决的关键性技术问题。 对感兴趣目标的数量、位置、型号等参数信息的精确获取一直是合成孔径雷达(SAR)技术中最为重要的研究内容之一。现阶段的SAR信息处理主要分为成像和解译两大部分,两者的研究相对独立。SAR成像和解译各自开发了大量算法,复杂度越来越高,但SAR解译并未因成像分辨率提升而变得简单,特别是对重点目标识别率低的问题并未从本质上得以解决。针对上述问题,该文从SAR成像解译一体化角度出发,尝试利用“数据驱动+智能学习”的方法提升机载SAR的信息处理能力。首先分析了基于“数据驱动+智能学习”方法的SAR成像解译一体化的可行性及现阶段存在的主要问题;在此基础上,提出一种“数据驱动+智能学习”的SAR学习成像方法,给出了学习成像框架、网络参数选取方法、网络训练方法和初步的仿真结果,并分析了需要解决的关键性技术问题。
11
合成孔径雷达技术经历了二维SAR、二维半SAR(InSAR)、三维SAR,已发展到如今的多维度SAR,取得了巨大的技术成就。该文在简要总结合成孔径雷达及其成像技术发展历程的基础上,提出了全息合成孔径雷达的概念并首次给出了明确的定义,指出该定义与现有全息雷达、多基线圆迹SAR、多维度SAR等概念的区别与联系。并且基于现有多维度SAR模型框架,给出了全息SAR的成像体制和信号模型,提出了初步的成像思路,为全息SAR技术的发展提供了初步的理论和技术框架基础。 合成孔径雷达技术经历了二维SAR、二维半SAR(InSAR)、三维SAR,已发展到如今的多维度SAR,取得了巨大的技术成就。该文在简要总结合成孔径雷达及其成像技术发展历程的基础上,提出了全息合成孔径雷达的概念并首次给出了明确的定义,指出该定义与现有全息雷达、多基线圆迹SAR、多维度SAR等概念的区别与联系。并且基于现有多维度SAR模型框架,给出了全息SAR的成像体制和信号模型,提出了初步的成像思路,为全息SAR技术的发展提供了初步的理论和技术框架基础。
12
多平台合成孔径雷达(SAR)是合成孔径雷达极具发展潜力的研究方向之一,该文集中讨论了多平台SAR的成像算法,包括机载SAR、弹载SAR和星载SAR平台。该文首先简要阐述了SAR回波模型的建立,包括“斜距模型和成像模式”,然后综述了近年来机载SAR、弹载SAR和星载SAR成像算法的研究进展,并详细阐述了各平台固有的特性以及面临的挑战,最后对未来多平台SAR成像算法研究的发展趋势进行了展望。 多平台合成孔径雷达(SAR)是合成孔径雷达极具发展潜力的研究方向之一,该文集中讨论了多平台SAR的成像算法,包括机载SAR、弹载SAR和星载SAR平台。该文首先简要阐述了SAR回波模型的建立,包括“斜距模型和成像模式”,然后综述了近年来机载SAR、弹载SAR和星载SAR成像算法的研究进展,并详细阐述了各平台固有的特性以及面临的挑战,最后对未来多平台SAR成像算法研究的发展趋势进行了展望。
13
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。 目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
14
该文针对多方位角观测星载SAR新技术进行综述。首先分析了当前国内外SAR卫星发展现状和趋势,并从多个角度对比综述了其对地观测的能力。在此基础上,结合当前应用需求对多方位角观测星载SAR工作新模式进行了综述,解析其工作机理,并结合试验结果总结分析了多方位角观测星载SAR在目标散射信息、几何信息和运动信息获取方面的优势。最后,对多方位角观测星载SAR技术的发展进行了总结和展望。 该文针对多方位角观测星载SAR新技术进行综述。首先分析了当前国内外SAR卫星发展现状和趋势,并从多个角度对比综述了其对地观测的能力。在此基础上,结合当前应用需求对多方位角观测星载SAR工作新模式进行了综述,解析其工作机理,并结合试验结果总结分析了多方位角观测星载SAR在目标散射信息、几何信息和运动信息获取方面的优势。最后,对多方位角观测星载SAR技术的发展进行了总结和展望。
15
针对雷达对海上目标探测技术研究的数据需求以及目前公开的雷达对海探测数据缺乏的问题,该文提出一项“雷达对海探测数据共享计划”,旨在利用X波段固态全相参雷达等多型雷达开展对海探测试验,获取不同海况、分辨率、擦地角条件下目标和海杂波数据,并同步获取海洋气象水文数据、目标位置与轨迹的真实数据,实现雷达实测数据的标准化、规范化管理,推进数据集公开共享,服务于海杂波特性研究,有力地支持海杂波抑制和目标检测技术研究。 针对雷达对海上目标探测技术研究的数据需求以及目前公开的雷达对海探测数据缺乏的问题,该文提出一项“雷达对海探测数据共享计划”,旨在利用X波段固态全相参雷达等多型雷达开展对海探测试验,获取不同海况、分辨率、擦地角条件下目标和海杂波数据,并同步获取海洋气象水文数据、目标位置与轨迹的真实数据,实现雷达实测数据的标准化、规范化管理,推进数据集公开共享,服务于海杂波特性研究,有力地支持海杂波抑制和目标检测技术研究。
16
海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在“超杂波检测”的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制(“双高”体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。 海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在“超杂波检测”的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制(“双高”体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。
17
当前,国内外逆合成孔径雷达(ISAR)系统均朝着高载频、大带宽、多极化、分布式、网络化的方向发展,并牵引ISAR成像技术的发展和进步。从ISAR图像的角度来看,ISAR成像的发展变化主要可归纳为精细化成像以提升成像质量和多维度成像以丰富成像信息两个方面。该文首先从雷达回波脉冲压缩、雷达系统失真校正、目标高速运动补偿、距离向自聚焦、平动补偿、转动补偿、图像重构、图像后处理等方面综述雷达精细化成像方法,然后从极化、多频带融合、多站多视角成像、三维成像等方面综述雷达成像维度的扩展,最后从成像建模、复杂场景精细成像、实时成像、成像评价与图像应用等4个方面进行展望分析。 当前,国内外逆合成孔径雷达(ISAR)系统均朝着高载频、大带宽、多极化、分布式、网络化的方向发展,并牵引ISAR成像技术的发展和进步。从ISAR图像的角度来看,ISAR成像的发展变化主要可归纳为精细化成像以提升成像质量和多维度成像以丰富成像信息两个方面。该文首先从雷达回波脉冲压缩、雷达系统失真校正、目标高速运动补偿、距离向自聚焦、平动补偿、转动补偿、图像重构、图像后处理等方面综述雷达精细化成像方法,然后从极化、多频带融合、多站多视角成像、三维成像等方面综述雷达成像维度的扩展,最后从成像建模、复杂场景精细成像、实时成像、成像评价与图像应用等4个方面进行展望分析。
18
随着人工智能的兴起,利用深度学习技术实现SAR舰船检测,能够有效避免传统的复杂特征设计,并且检测精度获得了极大的改善。然而,现如今大多数检测模型往往以牺牲检测速度为代价来提高检测精度,限制了一些SAR实时性应用,如紧急军事部署、迅速海难救援、实时海洋环境监测等。为了解决这个问题,该文提出一种基于深度分离卷积神经网络(DS-CNN)的高速高精度SAR舰船检测方法SARShipNet-20,该方法取代传统卷积神经网络(T-CNN),并结合通道注意力机制(CA)和空间注意力机制(SA),能够同时实现高速和高精度的SAR舰船检测。该方法在实时性SAR应用领域具有一定的现实意义,并且其轻量级的模型有助于未来的FPGA或DSP的硬件移植。 随着人工智能的兴起,利用深度学习技术实现SAR舰船检测,能够有效避免传统的复杂特征设计,并且检测精度获得了极大的改善。然而,现如今大多数检测模型往往以牺牲检测速度为代价来提高检测精度,限制了一些SAR实时性应用,如紧急军事部署、迅速海难救援、实时海洋环境监测等。为了解决这个问题,该文提出一种基于深度分离卷积神经网络(DS-CNN)的高速高精度SAR舰船检测方法SARShipNet-20,该方法取代传统卷积神经网络(T-CNN),并结合通道注意力机制(CA)和空间注意力机制(SA),能够同时实现高速和高精度的SAR舰船检测。该方法在实时性SAR应用领域具有一定的现实意义,并且其轻量级的模型有助于未来的FPGA或DSP的硬件移植。
19
合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。 合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。
20
雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。 雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。