优先发表

优先发表栏目的论文已经同行评议并正式录用,目前处于编校和网络出版状态,其卷期、页码尚未确定,但可以根据DOI引用。本栏目内容尚未正式出版,未经许可,不得转载。
对于合成孔径雷达(SAR)图像,传统的超分辨重建方法对视觉特征的人为构造十分依赖,基于普通卷积神经网络(CNN)的超分辨重建方法对微小目标的重建能力较弱,对边缘轮廓的保真度较差。针对以上问题,该文提出一种基于特征复用的膨胀-残差卷积超分辨网络模型,同时引入感知损失,实现了精确的SAR图像4倍语义级超分辨。该方法为增加网络感受野,采用膨胀-残差卷积(DR-CNN)结构用于限制模型中特征图分辨率的严重损失,提高网络对微小细节的敏感度;为实现不同层级的特征最大化利用,将不同层级的特征图进行级联,形成一种特征复用结构(FRDR-CNN),以此大幅度提升特征提取模块的效率,进一步提升超分辨精度;针对SAR图像特殊的相干斑噪声干扰,引入感知损失,使得该方法在恢复图像边缘和精细的纹理信息方面具有优越表现。文中实验表明,与传统算法以及目前较为流行的几种全卷积神经网络超分辨重建算法相比,该文采用的FRDR-CNN模型在视觉上对小物体的超分辨重建能力更强,对边界等轮廓信息的重建更准确,客观指标中的峰值信噪比(PSNR)和结构相似性指数(SSIM)分别为33.5023 dB和0.5127,边缘保持系数(EPD-ROA)在水平和垂直方向上分别为0.4243和0.4373。 对于合成孔径雷达(SAR)图像,传统的超分辨重建方法对视觉特征的人为构造十分依赖,基于普通卷积神经网络(CNN)的超分辨重建方法对微小目标的重建能力较弱,对边缘轮廓的保真度较差。针对以上问题,该文提出一种基于特征复用的膨胀-残差卷积超分辨网络模型,同时引入感知损失,实现了精确的SAR图像4倍语义级超分辨。该方法为增加网络感受野,采用膨胀-残差卷积(DR-CNN)结构用于限制模型中特征图分辨率的严重损失,提高网络对微小细节的敏感度;为实现不同层级的特征最大化利用,将不同层级的特征图进行级联,形成一种特征复用结构(FRDR-CNN),以此大幅度提升特征提取模块的效率,进一步提升超分辨精度;针对SAR图像特殊的相干斑噪声干扰,引入感知损失,使得该方法在恢复图像边缘和精细的纹理信息方面具有优越表现。文中实验表明,与传统算法以及目前较为流行的几种全卷积神经网络超分辨重建算法相比,该文采用的FRDR-CNN模型在视觉上对小物体的超分辨重建能力更强,对边界等轮廓信息的重建更准确,客观指标中的峰值信噪比(PSNR)和结构相似性指数(SSIM)分别为33.5023 dB和0.5127,边缘保持系数(EPD-ROA)在水平和垂直方向上分别为0.4243和0.4373。
地基雷达是近20几年逐渐发展成熟的微波遥感成像技术,目前已广泛应用于滑坡、崩塌等地质灾害的监测中。地基雷达通过干涉测量原理可以监测到目标区域发生的微小形变,然而受人为因素、地质因素、气象因素等影响,导致雷达图像失相干严重,给长期定量化监测带来较大的难度。因此,迫切需要在定量监测的基础上,进一步开展变化检测方面的应用,为长期全面了解监测区域的动态变化提供有效信息。针对上述问题,该文提出了一种基于改进的模糊C均值聚类(FCM)算法对地基雷达图像进行无监督变化检测,该方法首次利用相干系数图和均值对数比值图进行非下采样轮廓波变换(NSCT)和局部能量法得到合成差异图,然后利用主成分分析(PCA)提取合成差异图中每个像素的特征向量,根据地基雷达图像特点对FCM进行改进,通过改进的FCM对每个像素的特征向量进行聚类得到最终的变化检测结果。利用地基雷达LSA对中国西南某省出现的堰塞体的治理过程进行监测,获取监测区域的地基雷达图像,监测过程中受降水等影响监测体出现滑坡,使用该文方法对其进行变化检测,结果表明该文方法更容易进行聚类分割,变化检测结果在保留变化区域的同时噪声点明显减少。 地基雷达是近20几年逐渐发展成熟的微波遥感成像技术,目前已广泛应用于滑坡、崩塌等地质灾害的监测中。地基雷达通过干涉测量原理可以监测到目标区域发生的微小形变,然而受人为因素、地质因素、气象因素等影响,导致雷达图像失相干严重,给长期定量化监测带来较大的难度。因此,迫切需要在定量监测的基础上,进一步开展变化检测方面的应用,为长期全面了解监测区域的动态变化提供有效信息。针对上述问题,该文提出了一种基于改进的模糊C均值聚类(FCM)算法对地基雷达图像进行无监督变化检测,该方法首次利用相干系数图和均值对数比值图进行非下采样轮廓波变换(NSCT)和局部能量法得到合成差异图,然后利用主成分分析(PCA)提取合成差异图中每个像素的特征向量,根据地基雷达图像特点对FCM进行改进,通过改进的FCM对每个像素的特征向量进行聚类得到最终的变化检测结果。利用地基雷达LSA对中国西南某省出现的堰塞体的治理过程进行监测,获取监测区域的地基雷达图像,监测过程中受降水等影响监测体出现滑坡,使用该文方法对其进行变化检测,结果表明该文方法更容易进行聚类分割,变化检测结果在保留变化区域的同时噪声点明显减少。
基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提出了分级聚类算法(H-FCM),该方法将洪灾后的SAR图像与洪灾前的光学图像融合。基于融合图像,该方法利用提出的分级聚类模型获得洪灾区域的初步检测结果。此外,该算法在利用所提出的区域生长算法获得洪灾前河流位置后,将其作为初步检测结果的空间约束,进一步筛除疑似洪灾区域,并显著地提升了检测性能。该文的实验数据包括1999年英国格洛斯特洪灾前后的遥感图像和2019年中国南昌洪灾前后的遥感图像。通过对比实验,H-FCM算法的有效性得到验证。 基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提出了分级聚类算法(H-FCM),该方法将洪灾后的SAR图像与洪灾前的光学图像融合。基于融合图像,该方法利用提出的分级聚类模型获得洪灾区域的初步检测结果。此外,该算法在利用所提出的区域生长算法获得洪灾前河流位置后,将其作为初步检测结果的空间约束,进一步筛除疑似洪灾区域,并显著地提升了检测性能。该文的实验数据包括1999年英国格洛斯特洪灾前后的遥感图像和2019年中国南昌洪灾前后的遥感图像。通过对比实验,H-FCM算法的有效性得到验证。
该文提出了一种在多普勒频谱模糊情况下的星载方位向多通道高分宽幅合成孔径雷达地面运动目标检测(SAR-GMTI)系统的杂波抑制方法。首先,利用方位解线性调频对方位向多通道(HRWS) SAR-GMTI系统中的回波进行处理,得到杂波和动目标的粗聚焦图像。然后,将多通道SAR系统的粗聚焦图像表示为矩阵形式,并估计出相应的协方差矩阵。之后,用杂波协方差矩阵构造杂波空间的正交矢量,即最小特征值对应的特征向量。该方法需要一个冗余的通道自由度。由于杂波空间的正交矢量与杂波空间向量是正交的,因此可以用来抑制杂波。最后,通过仿真和实测数据实验结果验证该文所提杂波抑制方法的有效性。 该文提出了一种在多普勒频谱模糊情况下的星载方位向多通道高分宽幅合成孔径雷达地面运动目标检测(SAR-GMTI)系统的杂波抑制方法。首先,利用方位解线性调频对方位向多通道(HRWS) SAR-GMTI系统中的回波进行处理,得到杂波和动目标的粗聚焦图像。然后,将多通道SAR系统的粗聚焦图像表示为矩阵形式,并估计出相应的协方差矩阵。之后,用杂波协方差矩阵构造杂波空间的正交矢量,即最小特征值对应的特征向量。该方法需要一个冗余的通道自由度。由于杂波空间的正交矢量与杂波空间向量是正交的,因此可以用来抑制杂波。最后,通过仿真和实测数据实验结果验证该文所提杂波抑制方法的有效性。
距离徙动算法(RMA)作为一种合成孔径雷达(SAR)频域成像算法,理论上能够达到最优性能。然而,该算法采用逐像素点卷积运算实现Stolt映射,其计算效率无法满足SAR大数据量处理需求。据此,该文提出基于尺度变换原理(PCS)的RMA成像算法。首先,将SAR回波数据沿距离向进行划分,利用子带参考距离处2阶距离方位耦合项与高阶项对子带信号进行补偿;然后,转化非线性Stolt映射为线性形式;最后,利用PCS原理实现Stolt插值,以实现高效率的数据重采样。所提PCS-RMA算法仅利用快速傅里叶变换和复矢量相乘操作即可实现改进型Stolt映射,兼具良好的聚焦性能与较高的计算效率。基于多组仿真数据与X波段1.2 GHz带宽的机载SAR实测数据处理结果,验证了所提算法的有效性,同时该算法可进一步应用于弹载/星载/无人机载SAR数据的快速成像处理。 距离徙动算法(RMA)作为一种合成孔径雷达(SAR)频域成像算法,理论上能够达到最优性能。然而,该算法采用逐像素点卷积运算实现Stolt映射,其计算效率无法满足SAR大数据量处理需求。据此,该文提出基于尺度变换原理(PCS)的RMA成像算法。首先,将SAR回波数据沿距离向进行划分,利用子带参考距离处2阶距离方位耦合项与高阶项对子带信号进行补偿;然后,转化非线性Stolt映射为线性形式;最后,利用PCS原理实现Stolt插值,以实现高效率的数据重采样。所提PCS-RMA算法仅利用快速傅里叶变换和复矢量相乘操作即可实现改进型Stolt映射,兼具良好的聚焦性能与较高的计算效率。基于多组仿真数据与X波段1.2 GHz带宽的机载SAR实测数据处理结果,验证了所提算法的有效性,同时该算法可进一步应用于弹载/星载/无人机载SAR数据的快速成像处理。
航迹起始是群目标跟踪的首要环节,其性能好坏直接影响着目标跟踪航迹的质量。传统的群目标航迹起始方法仅利用目标的位置信息完成分群检测和等效量测求解等步骤,没有充分利用回波幅度信息,存在分群检测不理想、等效量测求解不准确等问题,有可能引起失跟现象。针对此问题,该文提出一种回波幅度信息辅助的群目标航迹起始方法。首先利用目标位置信息和幅度信息完成分群检测,然后综合采用幅度加权和位置加权求解等效量测,最后基于修正的逻辑法进行群目标航迹起始。该文方法在分群检测和求解等效量测等步骤充分利用了回波幅度信息,不仅可以在集群数量未知的情况下正确划分群,而且降低了失跟率,提高了群目标的跟踪性能。仿真结果验证了所提方法的有效性。 航迹起始是群目标跟踪的首要环节,其性能好坏直接影响着目标跟踪航迹的质量。传统的群目标航迹起始方法仅利用目标的位置信息完成分群检测和等效量测求解等步骤,没有充分利用回波幅度信息,存在分群检测不理想、等效量测求解不准确等问题,有可能引起失跟现象。针对此问题,该文提出一种回波幅度信息辅助的群目标航迹起始方法。首先利用目标位置信息和幅度信息完成分群检测,然后综合采用幅度加权和位置加权求解等效量测,最后基于修正的逻辑法进行群目标航迹起始。该文方法在分群检测和求解等效量测等步骤充分利用了回波幅度信息,不仅可以在集群数量未知的情况下正确划分群,而且降低了失跟率,提高了群目标的跟踪性能。仿真结果验证了所提方法的有效性。
由于合成孔径雷达(SAR)特殊的成像机制,导致了SAR图像上出现了旁瓣效应(SVA)。针对舰船目标检测过程中,旁瓣效应改变了强反射目标的形状导致的定位困难与定位错误问题,该文提出了一种基于空间变迹滤波与有序统计恒虚警率(OS-CFAR)的舰船检测算法。该算法将空间变迹滤波算法运用到复图像数据中,针对目标检测要求的实时性问题进行算法改进,通过全局CFAR只对潜在目标点进行旁瓣抑制而忽略对舰船检测无意义的大量背景点,在抑制旁瓣的同时减少了算法运算量。然后采用非线性的OS-CAFR算法对旁瓣抑制后的图像进行目标检测,并且采用形态学膨胀运算,弥补SVA算法可能造成的像素点幅值错误降低的问题。最后利用高分三号(GF-3)的实测数据进行验证,通过对比有无使用该文算法的结果的图像对比度与检查目标个数,体现了算法的有效性。 由于合成孔径雷达(SAR)特殊的成像机制,导致了SAR图像上出现了旁瓣效应(SVA)。针对舰船目标检测过程中,旁瓣效应改变了强反射目标的形状导致的定位困难与定位错误问题,该文提出了一种基于空间变迹滤波与有序统计恒虚警率(OS-CFAR)的舰船检测算法。该算法将空间变迹滤波算法运用到复图像数据中,针对目标检测要求的实时性问题进行算法改进,通过全局CFAR只对潜在目标点进行旁瓣抑制而忽略对舰船检测无意义的大量背景点,在抑制旁瓣的同时减少了算法运算量。然后采用非线性的OS-CAFR算法对旁瓣抑制后的图像进行目标检测,并且采用形态学膨胀运算,弥补SVA算法可能造成的像素点幅值错误降低的问题。最后利用高分三号(GF-3)的实测数据进行验证,通过对比有无使用该文算法的结果的图像对比度与检查目标个数,体现了算法的有效性。
随着深度学习技术被应用于雷达目标识别领域,其自动提取目标特征的特性大大提高了识别的准确率和鲁棒性,但噪声环境下的鲁棒性有待进一步研究。该文提出了一种在噪声环境下基于卷积神经网络的雷达高分辨率距离像(HRRP)数据识别方法,通过增强训练集和使用残差块、inception结构和降噪自编码层增强网络结构,实现了在较宽信噪比范围下的较高识别率,其中在信噪比为0 dB的瑞利噪声条件下,识别率达到96.14%,并分析了网络结构和噪声类型对结果的影响。 随着深度学习技术被应用于雷达目标识别领域,其自动提取目标特征的特性大大提高了识别的准确率和鲁棒性,但噪声环境下的鲁棒性有待进一步研究。该文提出了一种在噪声环境下基于卷积神经网络的雷达高分辨率距离像(HRRP)数据识别方法,通过增强训练集和使用残差块、inception结构和降噪自编码层增强网络结构,实现了在较宽信噪比范围下的较高识别率,其中在信噪比为0 dB的瑞利噪声条件下,识别率达到96.14%,并分析了网络结构和噪声类型对结果的影响。
在复杂电磁环境下,往往需要在线估计杂波协方差矩阵,从而自适应调整滤波器权值,实现对杂波的有效抑制,这样有利于目标的估计、检测、定位或跟踪。该文考虑非高斯杂波模型,且部分杂波受到子空间信号干扰,并且有用信号也位于该子空间内。常规方法会导致自适应滤波器在目标多普勒频率处有较大的衰减,极大影响了有用信号的探测。为此提出了一种知识辅助的分层贝叶斯模型,采用变分贝叶斯推断方法获得杂波协方差矩阵的近似后验分布,利用后验均值设计杂波抑制滤波器,可以有效提高目标的探测性能。计算机仿真和实测数据验证结果表明,该方法能够有效抑制杂波,而在目标处有较好的探测能力。 在复杂电磁环境下,往往需要在线估计杂波协方差矩阵,从而自适应调整滤波器权值,实现对杂波的有效抑制,这样有利于目标的估计、检测、定位或跟踪。该文考虑非高斯杂波模型,且部分杂波受到子空间信号干扰,并且有用信号也位于该子空间内。常规方法会导致自适应滤波器在目标多普勒频率处有较大的衰减,极大影响了有用信号的探测。为此提出了一种知识辅助的分层贝叶斯模型,采用变分贝叶斯推断方法获得杂波协方差矩阵的近似后验分布,利用后验均值设计杂波抑制滤波器,可以有效提高目标的探测性能。计算机仿真和实测数据验证结果表明,该方法能够有效抑制杂波,而在目标处有较好的探测能力。
基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过计算量测子集的幅度似然寻找最优的量测划分方法。此外,计算量测单元的中心时,采用幅度加权的方法计算量测单元的质量中心,以取代目前广泛使用的几何中心,从而进一步降低杂波对滤波器的干扰。在信杂比分别为13 dB和6 dB的条件下,通过对Rayleigh杂波中Swerling 1型起伏目标的跟踪结果证明了所提方法相比高斯逆威沙特概率假设密度滤波器具有更优的势估计和状态估计性能。 基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过计算量测子集的幅度似然寻找最优的量测划分方法。此外,计算量测单元的中心时,采用幅度加权的方法计算量测单元的质量中心,以取代目前广泛使用的几何中心,从而进一步降低杂波对滤波器的干扰。在信杂比分别为13 dB和6 dB的条件下,通过对Rayleigh杂波中Swerling 1型起伏目标的跟踪结果证明了所提方法相比高斯逆威沙特概率假设密度滤波器具有更优的势估计和状态估计性能。
为了提高多输入多输出(MIMO)雷达3维成像沿运动方向的方位分辨率,该文从多快拍图像联合利用的角度入手,提出一种新的多输入多输出-逆合成孔径雷达(MIMO-ISAR)3维成像方法。其基本思路是通过对一段时间观测下2维平面阵列获取的多个单快拍3维图像进行相干处理,沿着散射点线性拟合的方向提取峰值并重构出新的3维图像。仿真实验结果表明,与单快拍3维成像方法相比,该方法可以显著提高成像结果沿运动方向的方位分辨率;与现有基于重排和插值的经典MIMO-ISAR方法相比,该方法对慢速和快速运动目标均适用,得到的成像结果聚焦良好并能够有效抑制沿运动方向的旁瓣。 为了提高多输入多输出(MIMO)雷达3维成像沿运动方向的方位分辨率,该文从多快拍图像联合利用的角度入手,提出一种新的多输入多输出-逆合成孔径雷达(MIMO-ISAR)3维成像方法。其基本思路是通过对一段时间观测下2维平面阵列获取的多个单快拍3维图像进行相干处理,沿着散射点线性拟合的方向提取峰值并重构出新的3维图像。仿真实验结果表明,与单快拍3维成像方法相比,该方法可以显著提高成像结果沿运动方向的方位分辨率;与现有基于重排和插值的经典MIMO-ISAR方法相比,该方法对慢速和快速运动目标均适用,得到的成像结果聚焦良好并能够有效抑制沿运动方向的旁瓣。
简缩极化(CP)模式是一种新型双极化模式。在实际工程应用中,包括简缩极化模式在内的所有双极化模式均无法直接通过外定标的方法补偿发射误差。因而有必要对发射误差所带来的影响进行详细分析。针对极化SAR系统,目前已有学者提出使用误差的最大归一化误差(MNE)参数对极化SAR系统的极化质量做分析评估。该文针对发射圆极化波的简缩极化模式提出了一种基于实际发射极化波极化轴比(AR)参数的发射误差分析方法。首先,通过仿真分析不同发射误差源对AR参数的影响,与此同时还展示了相同发射误差源影响下的MNE参数;通过分析对比,总结了AR参数相对MNE参数的3个优点;最后,使用高分三号卫星的实际测量误差数据与圆极化发射波实验系统的实测数据验证了该文提出的发射误差评估方法的有效性。 简缩极化(CP)模式是一种新型双极化模式。在实际工程应用中,包括简缩极化模式在内的所有双极化模式均无法直接通过外定标的方法补偿发射误差。因而有必要对发射误差所带来的影响进行详细分析。针对极化SAR系统,目前已有学者提出使用误差的最大归一化误差(MNE)参数对极化SAR系统的极化质量做分析评估。该文针对发射圆极化波的简缩极化模式提出了一种基于实际发射极化波极化轴比(AR)参数的发射误差分析方法。首先,通过仿真分析不同发射误差源对AR参数的影响,与此同时还展示了相同发射误差源影响下的MNE参数;通过分析对比,总结了AR参数相对MNE参数的3个优点;最后,使用高分三号卫星的实际测量误差数据与圆极化发射波实验系统的实测数据验证了该文提出的发射误差评估方法的有效性。
基于民用通信信号的无源雷达由于其辐射源分布密集,主通道与参考通道容易同时受同频辐射源干扰,严重影响检测效果。针对上述问题,该文提出了一种加入同频干扰抑制的信号处理流程。改进流程首先对所有通道接收信号联合处理,使用多通道盲反卷积算法估计各个辐射源直达波,再利用各通道主辐射源信号能量占比差异识别主辐射源直达波作为参考信号,然后对主通道中各辐射源杂波信号进行对消,最后用主辐射源直达波与对消剩余信号进行互模糊运算,完成目标检测。改进流程可以在不改变现有系统硬件条件的情况下有效抑制同频干扰,提升对消比,降低互模糊函数底噪,减少漏警。仿真分析与实测数据验证说明了该方法的正确性和有效性。 基于民用通信信号的无源雷达由于其辐射源分布密集,主通道与参考通道容易同时受同频辐射源干扰,严重影响检测效果。针对上述问题,该文提出了一种加入同频干扰抑制的信号处理流程。改进流程首先对所有通道接收信号联合处理,使用多通道盲反卷积算法估计各个辐射源直达波,再利用各通道主辐射源信号能量占比差异识别主辐射源直达波作为参考信号,然后对主通道中各辐射源杂波信号进行对消,最后用主辐射源直达波与对消剩余信号进行互模糊运算,完成目标检测。改进流程可以在不改变现有系统硬件条件的情况下有效抑制同频干扰,提升对消比,降低互模糊函数底噪,减少漏警。仿真分析与实测数据验证说明了该方法的正确性和有效性。
该文论述了利用新近研制的小型化多通道外辐射源雷达系统,开展基于长期演进(LTE)信号的外辐射源雷达目标探测实验研究的情况。首先从实测信号的模糊函数出发,探讨了该信号作为第三方照射源的优势。然后介绍了该体制雷达的系统方案设计以及外场实验。最后给出了不同目标的典型探测结果,从实验上证实了利用LTE信号实现地面及低空目标探测的技术可行性,为该探测技术的发展奠定了基础。 该文论述了利用新近研制的小型化多通道外辐射源雷达系统,开展基于长期演进(LTE)信号的外辐射源雷达目标探测实验研究的情况。首先从实测信号的模糊函数出发,探讨了该信号作为第三方照射源的优势。然后介绍了该体制雷达的系统方案设计以及外场实验。最后给出了不同目标的典型探测结果,从实验上证实了利用LTE信号实现地面及低空目标探测的技术可行性,为该探测技术的发展奠定了基础。