优先发表

优先发表栏目的论文已经同行评议并正式录用,目前处于编校和网络出版状态,其卷期、页码尚未确定,但可以根据DOI引用。本栏目内容尚未正式出版,未经许可,不得转载。
雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。 雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。
星载合成孔径雷达(SAR)能够全天时、全天候、高空间分辨率、宽刈幅观测海洋表面,是获取海面风场和波浪场信息的重要微波传感器。该文综述了多极化SAR海面风场遥感原理、地球物理模式函数,以及潜在应用(海气边界层现象、海上风能资源开发、台风监测与预警预报),系统总结了传统星载SAR、新型干涉和极化SAR海浪遥感方法和技术。随着雷达卫星编队飞行技术的逐步成熟,未来海洋卫星组网将成为全球海洋和极地观测新趋势,合成孔径雷达海面风场和波浪场定量遥感将从科学研究向业务化海洋动力环境监测发展。 星载合成孔径雷达(SAR)能够全天时、全天候、高空间分辨率、宽刈幅观测海洋表面,是获取海面风场和波浪场信息的重要微波传感器。该文综述了多极化SAR海面风场遥感原理、地球物理模式函数,以及潜在应用(海气边界层现象、海上风能资源开发、台风监测与预警预报),系统总结了传统星载SAR、新型干涉和极化SAR海浪遥感方法和技术。随着雷达卫星编队飞行技术的逐步成熟,未来海洋卫星组网将成为全球海洋和极地观测新趋势,合成孔径雷达海面风场和波浪场定量遥感将从科学研究向业务化海洋动力环境监测发展。
针对物体框标注样本包含大量异质成分的问题,该文提出了一种基于复值卷积神经网络(CV-CNN)样本精选的极化SAR(PolSAR)图像弱监督分类方法。该方法首先采用CV-CNN对物体框标注样本进行迭代精选,并同时训练出可直接用于分类的CV-CNN。然后利用所训练的CV-CNN完成极化SAR图像的分类。基于3幅实测极化SAR图像的实验结果表明,该文方法能够有效剔除异质样本,与采用原始物体框标注样本的传统全监督分类方法相比可以获得明显更优的分类结果,并且该方法采用CV-CNN比采用经典的支持矢量机(SVM)或Wishart分类器性能更优。 针对物体框标注样本包含大量异质成分的问题,该文提出了一种基于复值卷积神经网络(CV-CNN)样本精选的极化SAR(PolSAR)图像弱监督分类方法。该方法首先采用CV-CNN对物体框标注样本进行迭代精选,并同时训练出可直接用于分类的CV-CNN。然后利用所训练的CV-CNN完成极化SAR图像的分类。基于3幅实测极化SAR图像的实验结果表明,该文方法能够有效剔除异质样本,与采用原始物体框标注样本的传统全监督分类方法相比可以获得明显更优的分类结果,并且该方法采用CV-CNN比采用经典的支持矢量机(SVM)或Wishart分类器性能更优。
分布式软目标是指分布范围较大、具有时变的空间分布或内部相对运动的非刚性目标或目标群,是当前雷达领域较为关注的一类目标,其特性与感知研究是一个多学科交叉的问题。为便于雷达科技工作者较好地理解相关技术,该文从正问题和逆问题两个角度,分连续型和离散型两种情况,对这类目标的运动、电磁散射/传输、雷达特征、探测与参数反演等技术的现状进行了梳理,并分析了发展趋势。以飞机尾流为例,对这类目标的雷达特性与感知技术进行了阐述,为相关雷达探测技术发展提供重要参考。 分布式软目标是指分布范围较大、具有时变的空间分布或内部相对运动的非刚性目标或目标群,是当前雷达领域较为关注的一类目标,其特性与感知研究是一个多学科交叉的问题。为便于雷达科技工作者较好地理解相关技术,该文从正问题和逆问题两个角度,分连续型和离散型两种情况,对这类目标的运动、电磁散射/传输、雷达特征、探测与参数反演等技术的现状进行了梳理,并分析了发展趋势。以飞机尾流为例,对这类目标的雷达特性与感知技术进行了阐述,为相关雷达探测技术发展提供重要参考。
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。 飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
建筑物损毁评估在灾害应急监测中十分重要。近年来,随着SAR硬件多极化能力的增加,极化SAR为建筑物损毁评估提供了更多的可能性,基于极化特征的建筑物损毁评估方法逐渐成为了研究的重点。然而,由于极化SAR数据获取的限制,当前的研究主要集中在L, C, X等有限波段内。为了进一步加深对SAR图像损毁建筑物极化特征的理解并丰富其它波段下SAR图像损毁建筑物的极化特征应用,该文进行了建筑物Ku波段极化SAR仿真实验,并通过SAR图像极化分解的方法进行了损毁评估特征分析。该文首先制作了真实材料的建筑物缩比模型,利用微波特性测量与仿真成像科学实验平台对损毁前后的建筑物目标进行SAR仿真成像,获取了建筑物损毁前后的Ku波段极化SAR图像。然后,借助\begin{document}$ H/A/\alpha $\end{document}分解、Yamaguchi分解、Touzi分解等极化分解方法分析了Ku波段建筑物目标损毁前后的极化散射特征,分析表明,Yamaguchi分解得到的去定向后的体散射分量、二次散射分量占比以及Touzi分解得到的\begin{document}$ {\alpha }_{\rm s1} $\end{document}分量对于Ku波段建筑物损毁评估具有较好的指示意义;通过与X波段实验测量结果的对比,发现Ku波段对建筑物损毁评估更敏感,这对于未来雷达遥感应用具有重要的启发意义。 建筑物损毁评估在灾害应急监测中十分重要。近年来,随着SAR硬件多极化能力的增加,极化SAR为建筑物损毁评估提供了更多的可能性,基于极化特征的建筑物损毁评估方法逐渐成为了研究的重点。然而,由于极化SAR数据获取的限制,当前的研究主要集中在L, C, X等有限波段内。为了进一步加深对SAR图像损毁建筑物极化特征的理解并丰富其它波段下SAR图像损毁建筑物的极化特征应用,该文进行了建筑物Ku波段极化SAR仿真实验,并通过SAR图像极化分解的方法进行了损毁评估特征分析。该文首先制作了真实材料的建筑物缩比模型,利用微波特性测量与仿真成像科学实验平台对损毁前后的建筑物目标进行SAR仿真成像,获取了建筑物损毁前后的Ku波段极化SAR图像。然后,借助\begin{document}$ H/A/\alpha $\end{document}分解、Yamaguchi分解、Touzi分解等极化分解方法分析了Ku波段建筑物目标损毁前后的极化散射特征,分析表明,Yamaguchi分解得到的去定向后的体散射分量、二次散射分量占比以及Touzi分解得到的\begin{document}$ {\alpha }_{\rm s1} $\end{document}分量对于Ku波段建筑物损毁评估具有较好的指示意义;通过与X波段实验测量结果的对比,发现Ku波段对建筑物损毁评估更敏感,这对于未来雷达遥感应用具有重要的启发意义。
合成孔径雷达(SAR)成像模式丰富、覆盖范围广、分辨率高,可以长期、动态、宏观地对海洋进行监测。在完全发展的相干斑假设条件下,传统单通道SAR图像舰船目标检测方法主要研究幅度信息。然而,其部分假设条件在高分辨率情形下并非严格成立,因此无法有效利用单通道SAR图像的相位或复值信息。该文面向舰船目标检测应用,将单通道复值SAR图像统计建模方法划分为幅度、相位和复值统计建模3个部分,首先简要综述了单通道SAR图像幅度统计建模方法,然后详细阐述了单通道SAR图像相位和复值统计建模方法,并重点介绍了其建模过程和参数估计方法。在此基础上,该文给出了作者研究小组在基于复值统计信息的单通道SAR图像舰船目标检测方面的部分最新研究结果,并分析展望了下一步研究方向。 合成孔径雷达(SAR)成像模式丰富、覆盖范围广、分辨率高,可以长期、动态、宏观地对海洋进行监测。在完全发展的相干斑假设条件下,传统单通道SAR图像舰船目标检测方法主要研究幅度信息。然而,其部分假设条件在高分辨率情形下并非严格成立,因此无法有效利用单通道SAR图像的相位或复值信息。该文面向舰船目标检测应用,将单通道复值SAR图像统计建模方法划分为幅度、相位和复值统计建模3个部分,首先简要综述了单通道SAR图像幅度统计建模方法,然后详细阐述了单通道SAR图像相位和复值统计建模方法,并重点介绍了其建模过程和参数估计方法。在此基础上,该文给出了作者研究小组在基于复值统计信息的单通道SAR图像舰船目标检测方面的部分最新研究结果,并分析展望了下一步研究方向。
合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。 合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。
米波雷达具有很好的反隐身性能。多输入多输出(MIMO)雷达的波形分集具有高自由度特点,使MIMO雷达在检测和参数估计等方面具有更多优势,故米波MIMO雷达受到广泛研究。而测高是米波MIMO雷达最重要的问题之一。针对米波MIMO雷达测高问题,最大似然和广义多重信号分类方法是米波MIMO阵列雷达测高方法行之有效的算法,但其计算量大,工程中难以接受。该文提出一种基于块正交匹配追踪(BOMP)预处理的方法来降低计算量。首先对MIMO阵列接收数据稀疏化处理,然后通过数学操作将其变形至适合于BOMP算法的信号模型,然后利用粗栅格得到角度粗估计。并以此为初始值中心,取MIMO雷达波束宽度作为搜索范围。仿真结果表明该算法能有效降低搜索类测高算法的计算量。 米波雷达具有很好的反隐身性能。多输入多输出(MIMO)雷达的波形分集具有高自由度特点,使MIMO雷达在检测和参数估计等方面具有更多优势,故米波MIMO雷达受到广泛研究。而测高是米波MIMO雷达最重要的问题之一。针对米波MIMO雷达测高问题,最大似然和广义多重信号分类方法是米波MIMO阵列雷达测高方法行之有效的算法,但其计算量大,工程中难以接受。该文提出一种基于块正交匹配追踪(BOMP)预处理的方法来降低计算量。首先对MIMO阵列接收数据稀疏化处理,然后通过数学操作将其变形至适合于BOMP算法的信号模型,然后利用粗栅格得到角度粗估计。并以此为初始值中心,取MIMO雷达波束宽度作为搜索范围。仿真结果表明该算法能有效降低搜索类测高算法的计算量。
飞机尾流是飞机飞行时在其后方产生的一对反向旋转的强烈湍流,对后续飞机飞行安全具有重大影响,其探测已成为制约机场容量增长和影响空中交通安全管理的瓶颈,亟需发展飞机尾流雷达探测和监视的技术与系统。该文构建了基于激光雷达探测的飞机尾流特征参数反演系统,可基于实测数据反演得到尾流涡心位置和速度环量等特征参数。同时构建了尾流动力学、散射特性与雷达回波仿真模块,可实现参数反演算法的性能评估。该系统的参数反演性能优良,运行稳定,可为机场安全管控提供有效技术手段,为飞机尾流的短时行为预测、危害评估和动态间隔标准制定等提供基础支撑。 飞机尾流是飞机飞行时在其后方产生的一对反向旋转的强烈湍流,对后续飞机飞行安全具有重大影响,其探测已成为制约机场容量增长和影响空中交通安全管理的瓶颈,亟需发展飞机尾流雷达探测和监视的技术与系统。该文构建了基于激光雷达探测的飞机尾流特征参数反演系统,可基于实测数据反演得到尾流涡心位置和速度环量等特征参数。同时构建了尾流动力学、散射特性与雷达回波仿真模块,可实现参数反演算法的性能评估。该系统的参数反演性能优良,运行稳定,可为机场安全管控提供有效技术手段,为飞机尾流的短时行为预测、危害评估和动态间隔标准制定等提供基础支撑。
城市地表和人工建筑的稳定性监测一直是城市安全的重要监测内容之一。星载合成孔径雷达干涉测量(InSAR)技术以其大范围、高精度、高空间密度的形变获取能力,被广泛用于大范围地表形变监测。近年来,随着星载SAR系统分辨率的不断提高,时序InSAR技术越来越多地应用于重要基础设施的监测。该文结合作者团队长期基于时序InSAR技术在城市地区监测研究经历,总结和回顾了团队关于时序InSAR方法在城市动态监测中的一些典型应用,包括城市机场、高架路网、桥梁、铁路和地铁沿线等,根据多年获取的高分辨率TerraSAR-X影像、Cosmo-SkyMed影像以及后续免费获取的Sentinel-1影像等多种数据以及监测研究中发现的研究问题及相应解决方法,在应用中取得了良好的效果,展现了时序InSAR技术在城区目标精细监测中的潜力。 城市地表和人工建筑的稳定性监测一直是城市安全的重要监测内容之一。星载合成孔径雷达干涉测量(InSAR)技术以其大范围、高精度、高空间密度的形变获取能力,被广泛用于大范围地表形变监测。近年来,随着星载SAR系统分辨率的不断提高,时序InSAR技术越来越多地应用于重要基础设施的监测。该文结合作者团队长期基于时序InSAR技术在城市地区监测研究经历,总结和回顾了团队关于时序InSAR方法在城市动态监测中的一些典型应用,包括城市机场、高架路网、桥梁、铁路和地铁沿线等,根据多年获取的高分辨率TerraSAR-X影像、Cosmo-SkyMed影像以及后续免费获取的Sentinel-1影像等多种数据以及监测研究中发现的研究问题及相应解决方法,在应用中取得了良好的效果,展现了时序InSAR技术在城区目标精细监测中的潜力。
我国西部山区滑坡灾害频发,具有强隐蔽性、高突发性、强破坏性等特点,对灾害隐患点进行早期识别是最为有效的防灾减灾措施。西部山区多为高山峡谷区域且范围辽阔,人不易至甚至人不能至,传统的人工排查早期识别方法较难实施。合成孔径雷达干涉测量技术(InSAR)作为新兴雷达遥感测量手段,可以高效准确地对高山峡谷区域进行滑坡灾害隐患早期识别。该文基于欧洲空间局(ESA)的哨兵一号(Sentinel-1)SAR遥感数据,利用时间序列InSAR技术对雅砻江流域雅江县-木里县段的高山峡谷区域进行了滑坡灾害隐患广域早期识别,成功探测到8处隐患区域。并结合滑坡隐患历史资料与光学影像遥感解译对识别结果进行了验证与分析,对灾害点风险等级进行了评定。并探讨了几何畸变因素对高山峡谷区域InSAR技术滑坡灾害隐患广域早期识别的影响。该案例可为当地的防灾减灾提供有力的数据与技术支持,并为高山峡谷区的滑坡灾害隐患早期识别提供思路与参考。 我国西部山区滑坡灾害频发,具有强隐蔽性、高突发性、强破坏性等特点,对灾害隐患点进行早期识别是最为有效的防灾减灾措施。西部山区多为高山峡谷区域且范围辽阔,人不易至甚至人不能至,传统的人工排查早期识别方法较难实施。合成孔径雷达干涉测量技术(InSAR)作为新兴雷达遥感测量手段,可以高效准确地对高山峡谷区域进行滑坡灾害隐患早期识别。该文基于欧洲空间局(ESA)的哨兵一号(Sentinel-1)SAR遥感数据,利用时间序列InSAR技术对雅砻江流域雅江县-木里县段的高山峡谷区域进行了滑坡灾害隐患广域早期识别,成功探测到8处隐患区域。并结合滑坡隐患历史资料与光学影像遥感解译对识别结果进行了验证与分析,对灾害点风险等级进行了评定。并探讨了几何畸变因素对高山峡谷区域InSAR技术滑坡灾害隐患广域早期识别的影响。该案例可为当地的防灾减灾提供有力的数据与技术支持,并为高山峡谷区的滑坡灾害隐患早期识别提供思路与参考。
外辐射源雷达系统反隐身性能强、隐蔽性好、生存能力强,在军用和民用领域都具有十分广阔的应用场景。为了有效地对低信噪比的弱目标进行检测,并且同时满足系统的实时性需求,该文针对外辐射源雷达系统的特点,依据检测前跟踪算法的思想,提出一种基于信息积累的外辐射源雷达系统目标检测方法。该方法首先将目标状态空间离散格点化,然后利用递推贝叶斯滤波的思想在多帧观测数据之间进行目标状态信息的传递和积累,最后利用信息熵作为判决目标是否存在的条件,避免了对目标存在和目标不存在两种状态之间转移概率模型的先验假设,是一种实现简单、计算复杂度低、可并行度高的目标检测方法。实验结果表明,该方法不仅运行时间短,实时性能强,而且具有良好的检测性能和一定的鲁棒性。 外辐射源雷达系统反隐身性能强、隐蔽性好、生存能力强,在军用和民用领域都具有十分广阔的应用场景。为了有效地对低信噪比的弱目标进行检测,并且同时满足系统的实时性需求,该文针对外辐射源雷达系统的特点,依据检测前跟踪算法的思想,提出一种基于信息积累的外辐射源雷达系统目标检测方法。该方法首先将目标状态空间离散格点化,然后利用递推贝叶斯滤波的思想在多帧观测数据之间进行目标状态信息的传递和积累,最后利用信息熵作为判决目标是否存在的条件,避免了对目标存在和目标不存在两种状态之间转移概率模型的先验假设,是一种实现简单、计算复杂度低、可并行度高的目标检测方法。实验结果表明,该方法不仅运行时间短,实时性能强,而且具有良好的检测性能和一定的鲁棒性。
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。 目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
为了弥补单基线干涉合成孔径雷达(InSAR)观测信息不足以及几何结构单一限制,该文提出了一种利用ALOS-2 PALSAR-2多基线极化干涉合成孔径雷达(PolInSAR)数据反演森林高度的方法,首先引入相干最大分离算法(MCD)用于寻求极化空间内对体散射最为敏感的极化方式,并利用该极化方式的相干幅度在少量外部已知森林高度数据辅助下对时间去相干半经验散射模型进行解算,然后进一步融合多基线数据用于增加观测几何的多样性,提升反演结果的可靠性。为了验证上述方法的有效性,该文以湖南省攸县黄丰桥国有林场为实验区,采用3对分别具有14天时间基线的ALOS-2 PALSAR-2干涉影像进行实验分析。实验结果表明,该文所提方法有效改善已有方法中的假设和仅适用单基线干涉数据的限制,使反演精度至少提高40%。 为了弥补单基线干涉合成孔径雷达(InSAR)观测信息不足以及几何结构单一限制,该文提出了一种利用ALOS-2 PALSAR-2多基线极化干涉合成孔径雷达(PolInSAR)数据反演森林高度的方法,首先引入相干最大分离算法(MCD)用于寻求极化空间内对体散射最为敏感的极化方式,并利用该极化方式的相干幅度在少量外部已知森林高度数据辅助下对时间去相干半经验散射模型进行解算,然后进一步融合多基线数据用于增加观测几何的多样性,提升反演结果的可靠性。为了验证上述方法的有效性,该文以湖南省攸县黄丰桥国有林场为实验区,采用3对分别具有14天时间基线的ALOS-2 PALSAR-2干涉影像进行实验分析。实验结果表明,该文所提方法有效改善已有方法中的假设和仅适用单基线干涉数据的限制,使反演精度至少提高40%。
通过被动接收辐射源信号并确定其位置的无源定位技术,在电子侦察、搜索救援等领域具有重要价值。传统测向交叉、时差、频差等无源定位技术通常需要两步实现辐射源的定位,第1步通过截获的信号采样估计与辐射源位置有关的定位参数,第2步利用这些定位参数求解辐射源的位置,这种处理方式带来了信息量损失、定位参数关联困难、系统灵敏度需求高等问题。近十几年来,兴起了一种无需估计定位参数,而是直接处理原始采样信号获得辐射源位置估计的直接定位(DPD)技术,其具有适应低信噪比、无需参数关联、鲁棒性强等优势。在对已有直接定位技术进行全面总结基础上,该文归纳了基于不同信息类型的典型直接定位技术、特殊信号直接定位技术、高分辨率高精度直接定位技术、直接定位快速算法以及直接定位模型误差校正技术等已有成果,并对直接定位未来发展方向进行展望。 通过被动接收辐射源信号并确定其位置的无源定位技术,在电子侦察、搜索救援等领域具有重要价值。传统测向交叉、时差、频差等无源定位技术通常需要两步实现辐射源的定位,第1步通过截获的信号采样估计与辐射源位置有关的定位参数,第2步利用这些定位参数求解辐射源的位置,这种处理方式带来了信息量损失、定位参数关联困难、系统灵敏度需求高等问题。近十几年来,兴起了一种无需估计定位参数,而是直接处理原始采样信号获得辐射源位置估计的直接定位(DPD)技术,其具有适应低信噪比、无需参数关联、鲁棒性强等优势。在对已有直接定位技术进行全面总结基础上,该文归纳了基于不同信息类型的典型直接定位技术、特殊信号直接定位技术、高分辨率高精度直接定位技术、直接定位快速算法以及直接定位模型误差校正技术等已有成果,并对直接定位未来发展方向进行展望。
合成孔径雷达技术经历了二维SAR、二维半SAR(InSAR)、三维SAR,已发展到如今的多维度SAR,取得了巨大的技术成就。该文在简要总结合成孔径雷达及其成像技术发展历程的基础上,提出了全息合成孔径雷达的概念并首次给出了明确的定义,指出该定义与现有全息雷达、多基线圆迹SAR、多维度SAR等概念的区别与联系。并且基于现有多维度SAR模型框架,给出了全息SAR的成像体制和信号模型,提出了初步的成像思路,为全息SAR技术的发展提供了初步的理论和技术框架基础。 合成孔径雷达技术经历了二维SAR、二维半SAR(InSAR)、三维SAR,已发展到如今的多维度SAR,取得了巨大的技术成就。该文在简要总结合成孔径雷达及其成像技术发展历程的基础上,提出了全息合成孔径雷达的概念并首次给出了明确的定义,指出该定义与现有全息雷达、多基线圆迹SAR、多维度SAR等概念的区别与联系。并且基于现有多维度SAR模型框架,给出了全息SAR的成像体制和信号模型,提出了初步的成像思路,为全息SAR技术的发展提供了初步的理论和技术框架基础。
辐射源个体识别是一种仅通过信号的外部特征测量手段,提取辐射源指纹特征,从而识别发射给定信号的特定辐射源个体的技术。近年来,辐射源个体识别技术相关理论与实践应用不断完善,指纹特征提取方法的研究取得了较大的进展。该文在分析国内外大量学术研究成果的基础上,从指纹特征的内在逻辑出发提出了一种新的特征框架。该框架根据不同特征对辐射源指纹的描述特性以及相互之间的关联,将指纹特征划分为直接测量特征和降维变换特征两大类共3个层次,并系统性地梳理了辐射源指纹特征提取方法的研究现状。最后,该文对辐射源指纹特征提取的几个潜在研究方向进行了分析和展望, 希望对辐射源个体识别的研究和应用有所裨益。 辐射源个体识别是一种仅通过信号的外部特征测量手段,提取辐射源指纹特征,从而识别发射给定信号的特定辐射源个体的技术。近年来,辐射源个体识别技术相关理论与实践应用不断完善,指纹特征提取方法的研究取得了较大的进展。该文在分析国内外大量学术研究成果的基础上,从指纹特征的内在逻辑出发提出了一种新的特征框架。该框架根据不同特征对辐射源指纹的描述特性以及相互之间的关联,将指纹特征划分为直接测量特征和降维变换特征两大类共3个层次,并系统性地梳理了辐射源指纹特征提取方法的研究现状。最后,该文对辐射源指纹特征提取的几个潜在研究方向进行了分析和展望, 希望对辐射源个体识别的研究和应用有所裨益。
地基雷达是近20几年逐渐发展成熟的微波遥感成像技术,目前已广泛应用于滑坡、崩塌等地质灾害的监测中。地基雷达通过干涉测量原理可以监测到目标区域发生的微小形变,然而受人为因素、地质因素、气象因素等影响,导致雷达图像失相干严重,给长期定量化监测带来较大的难度。因此,迫切需要在定量监测的基础上,进一步开展变化检测方面的应用,为长期全面了解监测区域的动态变化提供有效信息。针对上述问题,该文提出了一种基于改进的模糊C均值聚类(FCM)算法对地基雷达图像进行无监督变化检测,该方法首次利用相干系数图和均值对数比值图进行非下采样轮廓波变换(NSCT)和局部能量法得到合成差异图,然后利用主成分分析(PCA)提取合成差异图中每个像素的特征向量,根据地基雷达图像特点对FCM进行改进,通过改进的FCM对每个像素的特征向量进行聚类得到最终的变化检测结果。利用地基雷达LSA对中国西南某省出现的堰塞体的治理过程进行监测,获取监测区域的地基雷达图像,监测过程中受降水等影响监测体出现滑坡,使用该文方法对其进行变化检测,结果表明该文方法更容易进行聚类分割,变化检测结果在保留变化区域的同时噪声点明显减少。 地基雷达是近20几年逐渐发展成熟的微波遥感成像技术,目前已广泛应用于滑坡、崩塌等地质灾害的监测中。地基雷达通过干涉测量原理可以监测到目标区域发生的微小形变,然而受人为因素、地质因素、气象因素等影响,导致雷达图像失相干严重,给长期定量化监测带来较大的难度。因此,迫切需要在定量监测的基础上,进一步开展变化检测方面的应用,为长期全面了解监测区域的动态变化提供有效信息。针对上述问题,该文提出了一种基于改进的模糊C均值聚类(FCM)算法对地基雷达图像进行无监督变化检测,该方法首次利用相干系数图和均值对数比值图进行非下采样轮廓波变换(NSCT)和局部能量法得到合成差异图,然后利用主成分分析(PCA)提取合成差异图中每个像素的特征向量,根据地基雷达图像特点对FCM进行改进,通过改进的FCM对每个像素的特征向量进行聚类得到最终的变化检测结果。利用地基雷达LSA对中国西南某省出现的堰塞体的治理过程进行监测,获取监测区域的地基雷达图像,监测过程中受降水等影响监测体出现滑坡,使用该文方法对其进行变化检测,结果表明该文方法更容易进行聚类分割,变化检测结果在保留变化区域的同时噪声点明显减少。
基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提出了分级聚类算法(H-FCM),该方法将洪灾后的SAR图像与洪灾前的光学图像融合。基于融合图像,该方法利用提出的分级聚类模型获得洪灾区域的初步检测结果。此外,该算法在利用所提出的区域生长算法获得洪灾前河流位置后,将其作为初步检测结果的空间约束,进一步筛除疑似洪灾区域,并显著地提升了检测性能。该文的实验数据包括1999年英国格洛斯特洪灾前后的遥感图像和2019年中国南昌洪灾前后的遥感图像。通过对比实验,H-FCM算法的有效性得到验证。 基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提出了分级聚类算法(H-FCM),该方法将洪灾后的SAR图像与洪灾前的光学图像融合。基于融合图像,该方法利用提出的分级聚类模型获得洪灾区域的初步检测结果。此外,该算法在利用所提出的区域生长算法获得洪灾前河流位置后,将其作为初步检测结果的空间约束,进一步筛除疑似洪灾区域,并显著地提升了检测性能。该文的实验数据包括1999年英国格洛斯特洪灾前后的遥感图像和2019年中国南昌洪灾前后的遥感图像。通过对比实验,H-FCM算法的有效性得到验证。
航迹起始是群目标跟踪的首要环节,其性能好坏直接影响着目标跟踪航迹的质量。传统的群目标航迹起始方法仅利用目标的位置信息完成分群检测和等效量测求解等步骤,没有充分利用回波幅度信息,存在分群检测不理想、等效量测求解不准确等问题,有可能引起失跟现象。针对此问题,该文提出一种回波幅度信息辅助的群目标航迹起始方法。首先利用目标位置信息和幅度信息完成分群检测,然后综合采用幅度加权和位置加权求解等效量测,最后基于修正的逻辑法进行群目标航迹起始。该文方法在分群检测和求解等效量测等步骤充分利用了回波幅度信息,不仅可以在集群数量未知的情况下正确划分群,而且降低了失跟率,提高了群目标的跟踪性能。仿真结果验证了所提方法的有效性。 航迹起始是群目标跟踪的首要环节,其性能好坏直接影响着目标跟踪航迹的质量。传统的群目标航迹起始方法仅利用目标的位置信息完成分群检测和等效量测求解等步骤,没有充分利用回波幅度信息,存在分群检测不理想、等效量测求解不准确等问题,有可能引起失跟现象。针对此问题,该文提出一种回波幅度信息辅助的群目标航迹起始方法。首先利用目标位置信息和幅度信息完成分群检测,然后综合采用幅度加权和位置加权求解等效量测,最后基于修正的逻辑法进行群目标航迹起始。该文方法在分群检测和求解等效量测等步骤充分利用了回波幅度信息,不仅可以在集群数量未知的情况下正确划分群,而且降低了失跟率,提高了群目标的跟踪性能。仿真结果验证了所提方法的有效性。
随着深度学习技术被应用于雷达目标识别领域,其自动提取目标特征的特性大大提高了识别的准确率和鲁棒性,但噪声环境下的鲁棒性有待进一步研究。该文提出了一种在噪声环境下基于卷积神经网络的雷达高分辨率距离像(HRRP)数据识别方法,通过增强训练集和使用残差块、inception结构和降噪自编码层增强网络结构,实现了在较宽信噪比范围下的较高识别率,其中在信噪比为0 dB的瑞利噪声条件下,识别率达到96.14%,并分析了网络结构和噪声类型对结果的影响。 随着深度学习技术被应用于雷达目标识别领域,其自动提取目标特征的特性大大提高了识别的准确率和鲁棒性,但噪声环境下的鲁棒性有待进一步研究。该文提出了一种在噪声环境下基于卷积神经网络的雷达高分辨率距离像(HRRP)数据识别方法,通过增强训练集和使用残差块、inception结构和降噪自编码层增强网络结构,实现了在较宽信噪比范围下的较高识别率,其中在信噪比为0 dB的瑞利噪声条件下,识别率达到96.14%,并分析了网络结构和噪声类型对结果的影响。
在复杂电磁环境下,往往需要在线估计杂波协方差矩阵,从而自适应调整滤波器权值,实现对杂波的有效抑制,这样有利于目标的估计、检测、定位或跟踪。该文考虑非高斯杂波模型,且部分杂波受到子空间信号干扰,并且有用信号也位于该子空间内。常规方法会导致自适应滤波器在目标多普勒频率处有较大的衰减,极大影响了有用信号的探测。为此提出了一种知识辅助的分层贝叶斯模型,采用变分贝叶斯推断方法获得杂波协方差矩阵的近似后验分布,利用后验均值设计杂波抑制滤波器,可以有效提高目标的探测性能。计算机仿真和实测数据验证结果表明,该方法能够有效抑制杂波,而在目标处有较好的探测能力。 在复杂电磁环境下,往往需要在线估计杂波协方差矩阵,从而自适应调整滤波器权值,实现对杂波的有效抑制,这样有利于目标的估计、检测、定位或跟踪。该文考虑非高斯杂波模型,且部分杂波受到子空间信号干扰,并且有用信号也位于该子空间内。常规方法会导致自适应滤波器在目标多普勒频率处有较大的衰减,极大影响了有用信号的探测。为此提出了一种知识辅助的分层贝叶斯模型,采用变分贝叶斯推断方法获得杂波协方差矩阵的近似后验分布,利用后验均值设计杂波抑制滤波器,可以有效提高目标的探测性能。计算机仿真和实测数据验证结果表明,该方法能够有效抑制杂波,而在目标处有较好的探测能力。
基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过计算量测子集的幅度似然寻找最优的量测划分方法。此外,计算量测单元的中心时,采用幅度加权的方法计算量测单元的质量中心,以取代目前广泛使用的几何中心,从而进一步降低杂波对滤波器的干扰。在信杂比分别为13 dB和6 dB的条件下,通过对Rayleigh杂波中Swerling 1型起伏目标的跟踪结果证明了所提方法相比高斯逆威沙特概率假设密度滤波器具有更优的势估计和状态估计性能。 基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过计算量测子集的幅度似然寻找最优的量测划分方法。此外,计算量测单元的中心时,采用幅度加权的方法计算量测单元的质量中心,以取代目前广泛使用的几何中心,从而进一步降低杂波对滤波器的干扰。在信杂比分别为13 dB和6 dB的条件下,通过对Rayleigh杂波中Swerling 1型起伏目标的跟踪结果证明了所提方法相比高斯逆威沙特概率假设密度滤波器具有更优的势估计和状态估计性能。
为了提高多输入多输出(MIMO)雷达3维成像沿运动方向的方位分辨率,该文从多快拍图像联合利用的角度入手,提出一种新的多输入多输出-逆合成孔径雷达(MIMO-ISAR)3维成像方法。其基本思路是通过对一段时间观测下2维平面阵列获取的多个单快拍3维图像进行相干处理,沿着散射点线性拟合的方向提取峰值并重构出新的3维图像。仿真实验结果表明,与单快拍3维成像方法相比,该方法可以显著提高成像结果沿运动方向的方位分辨率;与现有基于重排和插值的经典MIMO-ISAR方法相比,该方法对慢速和快速运动目标均适用,得到的成像结果聚焦良好并能够有效抑制沿运动方向的旁瓣。 为了提高多输入多输出(MIMO)雷达3维成像沿运动方向的方位分辨率,该文从多快拍图像联合利用的角度入手,提出一种新的多输入多输出-逆合成孔径雷达(MIMO-ISAR)3维成像方法。其基本思路是通过对一段时间观测下2维平面阵列获取的多个单快拍3维图像进行相干处理,沿着散射点线性拟合的方向提取峰值并重构出新的3维图像。仿真实验结果表明,与单快拍3维成像方法相比,该方法可以显著提高成像结果沿运动方向的方位分辨率;与现有基于重排和插值的经典MIMO-ISAR方法相比,该方法对慢速和快速运动目标均适用,得到的成像结果聚焦良好并能够有效抑制沿运动方向的旁瓣。
基于民用通信信号的无源雷达由于其辐射源分布密集,主通道与参考通道容易同时受同频辐射源干扰,严重影响检测效果。针对上述问题,该文提出了一种加入同频干扰抑制的信号处理流程。改进流程首先对所有通道接收信号联合处理,使用多通道盲反卷积算法估计各个辐射源直达波,再利用各通道主辐射源信号能量占比差异识别主辐射源直达波作为参考信号,然后对主通道中各辐射源杂波信号进行对消,最后用主辐射源直达波与对消剩余信号进行互模糊运算,完成目标检测。改进流程可以在不改变现有系统硬件条件的情况下有效抑制同频干扰,提升对消比,降低互模糊函数底噪,减少漏警。仿真分析与实测数据验证说明了该方法的正确性和有效性。 基于民用通信信号的无源雷达由于其辐射源分布密集,主通道与参考通道容易同时受同频辐射源干扰,严重影响检测效果。针对上述问题,该文提出了一种加入同频干扰抑制的信号处理流程。改进流程首先对所有通道接收信号联合处理,使用多通道盲反卷积算法估计各个辐射源直达波,再利用各通道主辐射源信号能量占比差异识别主辐射源直达波作为参考信号,然后对主通道中各辐射源杂波信号进行对消,最后用主辐射源直达波与对消剩余信号进行互模糊运算,完成目标检测。改进流程可以在不改变现有系统硬件条件的情况下有效抑制同频干扰,提升对消比,降低互模糊函数底噪,减少漏警。仿真分析与实测数据验证说明了该方法的正确性和有效性。
该文论述了利用新近研制的小型化多通道外辐射源雷达系统,开展基于长期演进(LTE)信号的外辐射源雷达目标探测实验研究的情况。首先从实测信号的模糊函数出发,探讨了该信号作为第三方照射源的优势。然后介绍了该体制雷达的系统方案设计以及外场实验。最后给出了不同目标的典型探测结果,从实验上证实了利用LTE信号实现地面及低空目标探测的技术可行性,为该探测技术的发展奠定了基础。 该文论述了利用新近研制的小型化多通道外辐射源雷达系统,开展基于长期演进(LTE)信号的外辐射源雷达目标探测实验研究的情况。首先从实测信号的模糊函数出发,探讨了该信号作为第三方照射源的优势。然后介绍了该体制雷达的系统方案设计以及外场实验。最后给出了不同目标的典型探测结果,从实验上证实了利用LTE信号实现地面及低空目标探测的技术可行性,为该探测技术的发展奠定了基础。