基于多元信息的多功能电磁集成超表面研究进展

许河秀 王彦朝 王朝辉 彭清

许河秀, 王彦朝, 王朝辉, 等. 基于多元信息的多功能电磁集成超表面研究进展[J]. 雷达学报, 2021, 10(2): 191–205. doi: 10.12000/JR21037
引用本文: 许河秀, 王彦朝, 王朝辉, 等. 基于多元信息的多功能电磁集成超表面研究进展[J]. 雷达学报, 2021, 10(2): 191–205. doi: 10.12000/JR21037
XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Research progress of multifunctional metasurfaces based on multiplexing concept[J]. Journal of Radars, 2021, 10(2): 191–205. doi: 10.12000/JR21037
Citation: XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Research progress of multifunctional metasurfaces based on multiplexing concept[J]. Journal of Radars, 2021, 10(2): 191–205. doi: 10.12000/JR21037

基于多元信息的多功能电磁集成超表面研究进展

doi: 10.12000/JR21037
基金项目: 国防173计划(2019-JCJQ-JJ-081),陕西省自然科学基金重点项目(2020JZ-33),中国科协军事领域青年人才托举工程计划(17-JCJQ-QT-003),空军工程大学校长基金重点项目(XNLX19030601)
详细信息
    作者简介:

    许河秀(1985–),男,江西九江人,博士后,教授、博士生导师,2014年获博士学位,现任空军工程大学防空反导学院教授,主要研究方向为超材料电磁调控与雷达天线、隐身应用等,目前已发表论文130余篇。E-mail: hxxuellen@gmail.com

    王彦朝(1995–),女,吉林延边人,空军工程大学电子科学与技术专业在读博士生,主要研究方向为超材料电磁调控。E-mail: Yzhwang007@163.com

    王朝辉(1994–),男,河南浚县人,空军工程大学电子科学与技术专业在读博士生,主要研究方向为新型电磁超表面与电磁调控。E-mail: Wangchaohui941216@163.com

    彭清:彭 清(1985–),女,江西九江人,空军工程大学基础部讲师,主要研究方向为超材料英文文献/数据挖掘。E-mail: 357950303@qq.com

    通讯作者:

    许河秀 hxxuellen@gmail.com

  • 责任主编:李龙 Corresponding Editor: LI Long
  • 中图分类号: TN82

Research Progress of Multifunctional Metasurfaces Based on the Multiplexing Concept

Funds: The National Defense Program of China (2019-JCJQ-JJ-081), The Key Program of Natural Science Foundation of Shaanxi Province (2020JZ-33), The Youth Talent Lifting Project of the China Association for Science and Technology (17-JCJQ-QT-003), The Key Principal’s Fund of Air Force Engineering University (XNLX19030601)
More Information
  • 摘要: 作为超材料的二维形式,梯度超表面由于其超薄结构、灵活的各向同性/异性结构选择和突变相位特性,具有很强的电磁波前操控能力,是目前的研究热点。该文率先提出以激励电磁波的极化元、频率元、角度元、方向元以及出射电磁波的位置元等一元、二元甚至多元信息组合编码的多功能分类方式,详细归类总结了多功能集成超表面的研究进展,获得了多功能集成超表面清晰的研究方案和技术路线。该文对多功能电磁超表面未来可能的发展方向进行了展望,旨在为多功能超表面研究提供新思路,实现更新颖、更复杂和更大容量的集成波前调控和功能器件,促进未来通信和雷达器件的集成与小型化发展。

     

  • 图  1  基于出射波不同空间位置信息编码的多功能集成超表面

    Figure  1.  Multifunctional metasurfaces based on position multiplexing of output wave

    图  2  基于线极化元编码的多功能集成超表面

    Figure  2.  Multifunctional metasurfaces based on polarization multiplexing of incoming wave under linear polarizations

    图  3  基于圆极化波旋向元编码的多功能集成超表面

    Figure  3.  Spin-multiplexed multifunctional metasurfaces under two orthogonal Circularly-Polarized (CP) wave channels

    图  4  基于频率元编码的多功能集成超表面

    Figure  4.  Multifunctional metasurfaces based on frequency multiplexing

    图  5  基于角度元编码的多功能集成超表面

    Figure  5.  Multifunctional metasurfaces based on incident angle multiplexing

    图  6  双面像超表面概念及示意图

    Figure  6.  Schematic diagram of the concept of Janus metasurface

    图  7  基于二元、多元电磁信息编码的多功能集成超表面

    Figure  7.  Multifunctional metasurfaces based on binary- and triple-information multiplexing

    图  8  多元双面像超表面概念及功能示意图[67]

    Figure  8.  Schematic diagram of the concept and function of Janus multiplexing metasurface[67]

    图  9  开展多元双面像超表面研究的科学意义和潜在工程实用价值

    Figure  9.  The scientific significance and potential engineering value of the research on Janus multiplexing metasurface

  • [1] SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(6): 77–79. doi: 10.1126/science.1058847
    [2] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [3] SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. doi: 10.1038/nmat3292
    [4] GLYBOVSKI S B, TRETYAKOV S A, BELOV P A, et al. Metasurfaces: From microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004
    [5] JIANG Qiang, JIN Guofan, and CAO Liangcai. When metasurface meets hologram: Principle and advances[J]. Advances in Optics and Photonics, 2019, 11(3): 518–576. doi: 10.1364/AOP.11.000518
    [6] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3: e218. doi: 10.1038/lsa.2014.99
    [7] SUN Shulin, HE Qiong, HAO Jiaming, et al. Electromagnetic metasurfaces: Physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380–479. doi: 10.1364/AOP.11.000380
    [8] HUANG Yaowei, XU Hexiu, SUN Shang, et al. Structured semiconductor interfaces: Active functionality on light manipulation[J]. Proceedings of the IEEE, 2020, 108(5): 772–794. doi: 10.1109/JPROC.2019.2919675
    [9] SHALTOUT A M, SHALAEV V M, and BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
    [10] HUANG Lingling, MÜHLENBERND H, LI Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444–6449. doi: 10.1002/adma.201502541
    [11] WEN Dandan, YUE Fuyong, LI Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    [12] ZHANG Chunmei, YUE Fuyong, WEN Dandan, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams[J]. ACS Photonics, 2017, 4(8): 1906–1912. doi: 10.1021/acsphotonics.7b00587
    [13] MEHMOOD M Q, MEI Shengtao, HUSSAIN S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533–2539. doi: 10.1002/adma.201504532
    [14] MAGUID E, YULEVICH I, VEKSLER D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202–1206. doi: 10.1126/science.aaf3417
    [15] ZHOU Junxiao, QIAN Haoliang, HU Guangwei, et al. Broadband photonic spin hall meta-lens[J]. ACS Nano, 2018, 12(1): 82–88. doi: 10.1021/acsnano.7b07379
    [16] BAO Yanjun, YU Ying, XU Haofei, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 2018, 28(51): 1805306. doi: 10.1002/adfm.201805306
    [17] XU Hexiu, TANG Shiwei, WANG Guangming, et al. Multifunctional microstrip array combining a linear polarizer and focusing metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682. doi: 10.1109/TAP.2016.2565742
    [18] CAI Tong, WANG Guangming, TANG Shiwei, et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied, 2017, 8(3): 034033. doi: 10.1103/PhysRevApplied.8.034033
    [19] CAI Tong, TANG Shiwei, WANG Guangming, et al. High-performance bifunctional metasurfaces in transmission and reflection geometries[J]. Advanced Optical Materials, 2017, 5(2): 1600506. doi: 10.1002/adom.201600506
    [20] MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [21] KATS M A, GENEVET P, AOUST G, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12364–12368. doi: 10.1073/pnas.1210686109
    [22] MA Huifeng, WANG Guizhen, KONG Gusheng, et al. Independent controls of differently-polarized reflected waves by anisotropic metasurfaces[J]. Scientific Reports, 2015, 5: 9605. doi: 10.1038/srep09605
    [23] LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76
    [24] XU Hexiu, TANG Shiwei, LING Xiaohui, et al. Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking[J]. Annalen der Physik, 2017, 529(5): 1700045. doi: 10.1002/andp.201700045
    [25] LIU Shuo, CUI Tiejun, NOOR A, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves[J]. Light: Science & Applications, 2018, 7: 18008. doi: 10.1038/lsa.2018.8
    [26] ZHANG Xin’ge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382
    [27] XU Hexiu, HAN Lei, LI Ying, et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control[J]. ACS Photonics, 2019, 6(1): 211–220. doi: 10.1021/acsphotonics.8b01439
    [28] DING Guowen, CHEN Ke, LUO Xinyao, et al. Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface[J]. Nanophotonics, 2020, 9(9): 2977–2987. doi: 10.1515/nanoph-2020-0203
    [29] LI Shiqing, WANG Zhuo, DONG Shaohua, et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 2020, 9(10): 3473–3481. doi: 10.1515/nanoph-2020-0200
    [30] ZHANG Kuang, YUAN Yueyi, DING Xumin, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430. doi: 10.1021/acsami.9b07102
    [31] FAN Qingbin, LIU Mingze, ZHANG Cheng, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
    [32] YUAN Yueyi, ZHANG Kuang, RATNI B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11: 4186. doi: 10.1038/s41467-020-17773-6
    [33] WANG Zuojia, JIA Hui, YAO Kan, et al. Circular dichroism metamirrors with near-perfect extinction[J]. ACS Photonics, 2016, 3(11): 2096–2101. doi: 10.1021/acsphotonics.6b00533
    [34] YANG Shengyan, LIU Zhe, HU Sha, et al. Spin-selective transmission in chiral folded metasurfaces[J]. Nano Letters, 2019, 19(6): 3432–3439. doi: 10.1021/acs.nanolett.8b04521
    [35] JING Liqiao, WANG Zuojia, MATURI R, et al. Gradient chiral metamirrors for spin-selective anomalous reflection[J]. Laser & Photonics Reviews, 2017, 11(6): 1700115. doi: 10.1002/lpor.201700115
    [36] WANG Qiu, PLUM E, YANG Quanlong, et al. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves[J]. Light: Science & Applications, 2018, 7: 25. doi: 10.1038/s41377-018-0019-8
    [37] XU Hexiu, HU Guangwei, LI Ying, et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 2019, 8: 3. doi: 10.1038/s41377-018-0113-y
    [38] LI Zhancheng, LIU Wenwei, CHENG Hua, et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 2020, 32(26): 1907983. doi: 10.1002/adma.201907983
    [39] CAI Tong, WANG Guangming, XU Hexiu, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Annalen der Physik, 2018, 530(1): 1700321. doi: 10.1002/andp.201700321
    [40] YANG Jianing, WU Xiaoyu, SONG Jiakun, et al. Cascaded metasurface for simultaneous control of transmission and reflection[J]. Optics Express, 2019, 27(6): 9061–9070. doi: 10.1364/OE.27.009061
    [41] AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342–1345. doi: 10.1126/science.aaa2494
    [42] HUANG Cheng, PAN Wenbo, MA Xiaoliang, et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Scientific Reports, 2016, 6: 23291. doi: 10.1038/srep23291
    [43] XU Hexiu, ZHANG Lei, KIM Y, et al. Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility[J]. Advanced Optical Materials, 2018, 6(10): 1800010. doi: 10.1002/adom.201800010
    [44] AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8: 14992. doi: 10.1038/ncomms14992
    [45] HUANG Lingxi, DUAN Yuping, DAI Xuhao, et al. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics[J]. Small, 2019, 15(40): 1902730. doi: 10.1002/smll.201902730
    [46] BAI Guodong, MA Qian, IQBAL S, et al. Multitasking shared aperture enabled with multiband digital coding metasurface[J]. Advanced Optical Materials, 2018, 6(21): 1800657. doi: 10.1002/adom.201800657
    [47] WANG Bo, DONG Fengliang, LI Qitong, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235–5240. doi: 10.1021/acs.nanolett.6b02326
    [48] XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi: 10.1002/adom.202000919
    [49] LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467
    [50] KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
    [51] QIU Meng, JIA Min, MA Shaojie, et al. Angular dispersions in terahertz metasurfaces: Physics and applications[J]. Physical Review Applied, 2018, 9(5): 054050.
    [52] ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light: Science & Applications, 2020, 9: 76. doi: 10.1038/s41377-020-0313-0
    [53] LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi: 10.1002/advs.201901434
    [54] LE D H, XU Ying, TENTZERIS M M, et al. Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response[J]. Extreme Mechanics Letters, 2020, 36: 100670. doi: 10.1016/j.eml.2020.100670
    [55] ZHANG Yuanbo, TANG T T, GIRIT C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820–823. doi: 10.1038/nature08105
    [56] LU Angyu, ZHU Hanyu, XIAO Jun, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744–749. doi: 10.1038/nnano.2017.100
    [57] YIN Xinghui, STEINLE T, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16
    [58] YU Ping, LI Jianxiong, ZHANG Shuang, et al. Dynamic janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584–4589. doi: 10.1021/acs.nanolett.8b01848
    [59] ZHANG Lei, WU Ruiyuan, BAI Guodong, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205
    [60] CHEN Ke, DING Guowen, HU Guangwei, et al. Directional Janus metasurface[J]. Advanced Materials, 2020, 32(2): 1906352. doi: 10.1002/adma.201906352
    [61] ZHANG Chiben, WANG Guangming, XU Hexiu, et al. Helicity-dependent multifunctional metasurfaces for full-space wave control[J]. Advanced Optical Materials, 2020, 8(8): 1901719. doi: 10.1002/adom.201901719
    [62] PAN Weikang, CAI Tong, TANG Shiwei, et al. Trifunctional metasurfaces: Concept and characterizations[J]. Optics Express, 2018, 26(13): 17447–17457. doi: 10.1364/OE.26.017447
    [63] LUAN Jing, YANG Sikang, LIU Deming, et al. Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation[J]. Optics Express, 2020, 28(3): 3732–3744. doi: 10.1364/OE.382580
    [64] JIN Lei, DONG Zhaogang, MEI Shengtao, et al. Noninterleaved metasurface for (26–1) spin- and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12): 8016–8024. doi: 10.1021/acs.nanolett.8b04246
    [65] WANG Qiu, ZHANG Xueqian, PLUM E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Advanced Optical Materials, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277
    [66] XU Hexiu, HU Guangwei, JIANG Menghua, et al. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface[J]. Advanced Materials Technologies, 2020, 5(1): 1900710. doi: 10.1002/admt.201900710
    [67] XU Hexiu, WANG Chaohui, WANG Yanzhao, et al. Spin-encoded wavelength-space multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2020, 10.1002/adom.202100190: 2100190. doi: 10.1002/adom.202100190
    [68] XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi: 10.1038/srep27503
    [69] XU Hexiu, TANG Shiwei, MA Shaojie, et al. Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch[J]. Scientific Reports, 2016, 6: 38255. doi: 10.1038/srep38255
    [70] XU Hexiu, TANG Shiwei, CAI Tong, et al. Multifunctional Metasurfaces: Design Principles and Device Realizations[M]. San Rafael, 2021: 1–184. doi: 10.2200/S01023ED1V01Y 202006MOP005.
    [71] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246

    CUI Tiejun, WU Haotian, and LIU Shuo. Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [72] QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2
  • 加载中
图(9)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  146
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-20
  • 修回日期:  2021-04-17
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-04-28

目录

    /

    返回文章
    返回