部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法

闫林杰 郝程鹏 殷超然 孙苇轩 侯朝焕

闫林杰, 郝程鹏, 殷超然, 等. 部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法[J]. 雷达学报, 待出版. doi:  10.12000/JR20140
引用本文: 闫林杰, 郝程鹏, 殷超然, 等. 部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法[J]. 雷达学报, 待出版. doi:  10.12000/JR20140
YAN Linjie, HAO Chengpeng, YIN Chaoran, et al. Modified generalized likelihood ratio test detection based on a symmetrically spaced linear array in partially homogeneous environments[J]. Journal of Radars, in press. doi:  10.12000/JR20140
Citation: YAN Linjie, HAO Chengpeng, YIN Chaoran, et al. Modified generalized likelihood ratio test detection based on a symmetrically spaced linear array in partially homogeneous environments[J]. Journal of Radars, in press. doi:  10.12000/JR20140

部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法

doi: 10.12000/JR20140
基金项目: 国家自然科学基金(61971412)
详细信息
    作者简介:

    闫林杰(1992–),女,山东青岛人,中国科学院声学研究所博士,主要研究方向为信号检测与估计,雷达、声呐信号检测。E-mail: yanlinjie16@163.com

    郝程鹏(1975–),男,中国科学院声学研究所研究员,博士生导师。国防科技卓越青年科学基金获得者,IEEE Senior Member、中高会智能信息处理产业化分会副理事长、中国电子学会青年科学家俱乐部会员,担任SCI源刊IEEE Access, EURASIP Journal on Advances in Signal Processing和Signal, Image and Video Processing副主编。主要从事雷达、水声信号处理相关研究。E-mail: haochengp@mail.ioa.ac.cn

    殷超然(1996–),男,陕西西安人,中国科学院声学研究所博士生,主要研究方向为统计信号处理与自适应目标检测。E-mail: yinchaoran18@mails.ucas.ac.cn

    孙苇轩(1997–),女,内蒙古赤峰人,中国科学院声学研究所硕士生。主要研究方向为空时自适应处理。E-mail: sunweixuan@mail.ioa.ac.cn

    侯朝焕(1936–),男,四川自贡人,中国科学院声学研究所研究员,博士生导师。1958年于北京大学物理系获得学士学位,现担任中国科学院大学教授。主要研究方向为信号信息处理、水声学。目前已发表论文200余篇。E-mail: hch@mail.ioa.ac.cn

    通讯作者:

    郝程鹏 haochengp@mail.ioa.ac.cn

  • 责任主编:谢文冲 Corresponding Editor: XIE Wenchong
  • 1在本文中,将接收回波中目标信号采用目标能量泄漏采样模型、干扰信号采用斜对称先验结构的接收信号模型统称为斜对称泄漏模型。
  • 中图分类号: TN957.51

Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments

Funds: The National Natural Science Foundation of China (61971412)
More Information
  • 摘要: 针对部分均匀高斯干扰环境下的点目标检测问题,该文基于广义似然比准则(GLRT)提出一种适用于空间对称线阵的修正GLRT检测方法。考虑到采样时存在的目标能量泄漏,在接收信号建模时采用目标能量泄漏采样模型弥补泄漏损失,并基于干扰协方差矩阵的斜对称结构降低对辅助数据的需求,最终联合待检测数据和辅助数据实现未知参数的估计,得到兼具有良好目标检测和距离估计性能的斜对称修正GLRT检测方法。仿真结果表明,该方法不仅在部分均匀环境下具有恒虚警特性,而且在辅助数据数量受限时,相比其同类型的检测方法具有1 dB以上的检测性能优势。
  • 图  1  PM-GLRT-PHE的${P_{\rm{fa}}}$$\gamma $的变化曲线

    Figure  1.  ${P_{\rm{fa}}}$ against $\gamma $ for the PM-GLRT-PHE

    图  2  PM-GLRT-PHE的${P_{\rm{fa}}}$$\rho $的变化曲线

    Figure  2.  ${P_{\rm{fa}}}$ against $\rho $ for the PM-GLRT-PHE

    图  3  辅助数据数量受限时的目标检测和距离估计性能

    Figure  3.  Detection and range estimation performance with small number of auxiliary samples

    图  4  不同$\gamma $下各检测方法的${P_{\rm{d}}}$随SCNR的变化曲线

    Figure  4.  ${P_{\rm{d}}}$ against SCNR for each detection method under different $\gamma $

    图  5  SCNR=18 dB时下各检测方法的${P_{\rm{d}}}$$\gamma $变化曲线

    Figure  5.  ${P_{\rm{d}}}$ against $\gamma $ for each detection method when SCNR=18 dB

    图  6  不同$\gamma $下各检测方法的${\delta _{\rm{rms}}}$随SCNR的变化曲线

    Figure  6.  ${\delta _{\rm{rms}}}$ against SCNR for each detection method under different $\gamma $

    图  7  SCNR=18 dB时各检测方法的${\delta _{\rm{rms}}}$$\gamma $的变化曲线

    Figure  7.  ${\delta _{\rm{rms}}}$ against $\gamma $ for each detection method when SCNR=18 dB

    图  8  辅助数据数量充足时的目标检测和距离估计性能

    Figure  8.  Detection and range estimation performance with sufficient number of auxiliary samples

    表  1  不同场景下PM-GLRT-PHE的阈值

    Table  1.   Thresholds of PM-GLRT-PHE in different cases

    仿真场景干扰数量干扰波达角度阈值$\eta $
    场景1002.0098
    场景212.0484
    场景325°, 10°2.0188
    场景43–15°, 5°, 15°1.9873
    场景54–20°, –10°, 5°, 20°2.0308
    下载: 导出CSV
  • [1] BRENNAN L E and REED L S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 237–252. doi:  10.1109/TAES.1973.309792
    [2] 王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000: 1–4.WANG Yongliang and PENG Yingning. Space-Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000: 1–4.
    [3] 王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. doi:  10.3724/SP.J.1300.2014.13081WANG Yongliang, LIU Weijian, XIE Wenchong, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. doi:  10.3724/SP.J.1300.2014.13081
    [4] KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi:  10.1109/TAES.1986.310745
    [5] 韩金旺, 张子敬, 刘军, 等. 基于贝叶斯的高斯杂波背景下MIMO雷达自适应检测算法[J]. 雷达学报, 2019, 8(4): 501–509. doi:  10.12000/JR18090HAN Jinwang, ZHANG Zijing, LIU Jun, et al. Adaptive Bayesian detection for MIMO radar in Gaussian clutter[J]. Journal of Radars, 2019, 8(4): 501–509. doi:  10.12000/JR18090
    [6] ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi:  10.1109/7.135446
    [7] LIU Jun, LIU Weijian, CHEN Bo, et al. Modified Rao test for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 714–725. doi:  10.1109/TSP.2015.2491892
    [8] 刘维建, 王利才, 狄源水, 等. 自适应能量检测器及在失配信号检测中的应用(英文)[J]. 雷达学报, 2015, 4(2): 149–159. doi:  10.12000/JR14132LIU Weijian, WANG Licai, DI Yuanshui, et al. Adaptive energy detector and its application for mismatched signal detection[J]. Journal of Radars, 2015, 4(2): 149–159. doi:  10.12000/JR14132
    [9] LIU Weijian, XIE Wenchong, and WANG Yongliang. Rao and Wald tests for distributed targets detection with unknown signal steering[J]. IEEE Signal Processing Letters, 2013, 20(11): 1086–1089. doi:  10.1109/LSP.2013.2277371
    [10] CUI Guolong, KONG Lingjiang, YANG Xiaobo, et al. Adaptive polarimetric MIMO radar detection[C]. 2010 International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, China, 2010: 1–4. doi: 10.1109/ISPACS.2010.5704762.
    [11] LIU Jun, ZHANG Zijing, YANG Yun, et al. A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5126–5140. doi:  10.1109/TSP.2011.2164073
    [12] NITZBERG R. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive pro-cessing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 124–127. doi:  10.1109/TAES.1980.308887
    [13] 丁昊, 薛永华, 黄勇, 等. 均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J]. 雷达学报, 2015, 4(4): 418–430. doi:  10.12000/JR14133DING Hao, XUE Yonghua, HUANG Yong, et al. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Journal of Radars, 2015, 4(4): 418–430. doi:  10.12000/JR14133
    [14] CASILLO M, DE MAIO A, IOMMELLI S, et al. A persymmetric GLRT for adaptive detection in partially-homogeneous environment[J]. IEEE Signal Processing Letters, 2007, 14(12): 1016–1019. doi:  10.1109/LSP.2007.906209
    [15] GAO Yongchan, LIAO Guisheng, ZHU Shengqi, et al. Persymmetric adaptive detectors in homogeneous and partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 331–342. doi:  10.1109/TSP.2013.2288087
    [16] WANG Yongliang, LIU Weijian, XIE Wenchong, et al. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57(8): 082310. doi:  10.1007/s11432-013-4984-5
    [17] LIU Weijian, LIU Jun, HUANG Lei, et al. Performance analysis of reduced-dimension subspace signal filtering and detection in sample-starved environment[J]. Journal of the Franklin Institute, 2018, 356(1): 629–653. doi:  10.1016/j.jfranklin.2018.10.017
    [18] LIU Weijian, XIE Wenchong, LI Rongfeng, et al. Adaptive detectors in the Krylov subspace[J]. Science China Information Sciences, 2014, 57(10): 102310. doi:  10.1007/s11432-014-5080-1
    [19] FOGLIA G, HAO Chengpeng, FARINA A, et al. Adaptive detection of point-like targets in partially homogeneous clutter with symmetric spectrum[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 2110–2119. doi:  10.1109/TAES.2017.2680758
    [20] YAN Linjie, HAO Chengpeng, ORLANDO D, et al. Parametric space-time detection and range estimation of point-like targets in partially homogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1228–1242. doi:  10.1109/TAES.2019.2928672
    [21] HAO Chengpeng, GAZOR S, ORLANDO D, et al. Parametric space-time detection and range estimation of a small target[J]. IET Radar, Sonar & Navigation, 2015, 9(2): 221–231. doi:  10.1049/iet-rsn.2014.0081
    [22] DE MAIO A, ORLANDO D, HAO Chengpeng, et al. Adaptive detection of point-like targets in spectrally symmetric interference[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3207–3220. doi:  10.1109/TSP.2016.2539140
    [23] LIU Jun, LIU Weijian, GAO Yongchan, et al. Persymmetric adaptive detection of subspace signals: Algorithms and performance analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6124–6136. doi:  10.1109/TSP.2018.2875416
    [24] HAO Chengpeng, ORLANDO D, FOGLIA G, et al. Knowledge-based adaptive detection: Joint exploitation of clutter and system symmetry properties[J]. IEEE Signal Processing Letters, 2016, 23(10): 1489–1493. doi:  10.1109/LSP.2016.2601931
    [25] ADDABBO P, LIU Jun, ORLANDO D, et al. Novel parameter estimation and radar detection approaches for multiple point-like targets: Designs and comparisons[J]. IEEE Signal Processing Letters, 2020, 27: 1789–1793. doi:  10.1109/LSP.2020.3028034
    [26] WANG Pu, LI Hongbin, and HIMED B. A new parametric GLRT for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 317–325. doi:  10.1109/TSP.2009.2030835
    [27] ORLANDO D and RICCI G. Adaptive radar detection and localization of a point-like target[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4086–4096. doi:  10.1109/TSP.2011.2159602
    [28] DE MAIO A, HAO Chengpeng, and ORLANDO D. An adaptive detector with range estimation capabilities for partially homogeneous environment[J]. IEEE Signal Processing Letters, 2014, 21(3): 325–329. doi:  10.1109/LSP.2014.2301763
    [29] HAO Chengpeng, GAZOR S, FOGLIA G, et al. Persymmetric adaptive detection and range estimation of a small target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2590–2604. doi:  10.1109/TAES.2015.140517
    [30] YAN Linjie, XU Congan, XU Da, et al. A persymmetric AMF for range localization in partially homogenous environment[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020. doi: 10.1109/SAM48682.2020.9104252.
    [31] 闫林杰, 王天琪, 郝程鹏, 等. 一种适用于空间对称线阵的泄漏目标检测方法[J]. 弹箭与制导学报, 2020, 录用待刊.YAN Linjie, WANG Tianqi, HAO Chengpeng, et al. A detection method with spillover of energy based on a symmet-rically-spaced linear array[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, in Press.
  • [1] 关键.  雷达海上目标特性综述 . 雷达学报, doi: 10.12000/JR20114
    [2] 丁金闪.  视频SAR成像与动目标阴影检测技术 . 雷达学报, doi: 10.12000/JR20018
    [3] 陈世超, 高鹤婷, 罗丰.  基于极化联合特征的海面目标检测方法 . 雷达学报, doi: 10.12000/JR20072
    [4] 郭倩, 王海鹏, 徐丰.  SAR图像飞机目标检测识别进展 . 雷达学报, doi: 10.12000/JR20020
    [5] 郭子薰, 水鹏朗, 白晓惠, 许述文, 李东宸.  海杂波中基于可控虚警K近邻的海面小目标检测 . 雷达学报, doi: 10.12000/JR20055
    [6] 黄寅礼, 孙路, 郭亮, 孙光才, 邢孟道, 杨军, 胡以华.  基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法 . 雷达学报, doi: 10.12000/JR19082
    [7] 张新勋, 周生华, 刘宏伟.  目标极化散射特性对极化分集雷达检测性能的影响 . 雷达学报, doi: 10.12000/JR18112
    [8] 许述文, 石星宇, 水鹏朗.  复合高斯杂波下抑制失配信号的自适应检测器 . 雷达学报, doi: 10.12000/JR19030
    [9] 黄瑞, 杜小勇, 胡卫东.  OFDM雷达多目标运动参数的近似最大似然估计 . 雷达学报, doi: 10.12000/JR17116
    [10] 程子扬, 何子述, 王智磊, 鲁彦希.  分布式MIMO雷达目标检测性能分析 . 雷达学报, doi: 10.12000/JR16147
    [11] 吴孙勇, 薛秋条, 朱圣棋, 闫青竹, 孙希延.  杂波环境下基于粒子滤波的微弱扩展目标检测前跟踪算法 . 雷达学报, doi: 10.12000/JR16128
    [12] 赵军香, 梁兴东, 李焱磊.  一种基于似然比统计量的SAR相干变化检测 . 雷达学报, doi: 10.12000/JR16065
    [13] 张增辉, 郁文贤.  稀疏微波SAR图像特征分析与目标检测研究 . 雷达学报, doi: 10.12000/JR15097
    [14] 王璐璐, 王宏强, 王满喜, 黎湘.  雷达目标检测的最优波形设计综述 . 雷达学报, doi: 10.12000/JR16084
    [15] 刘维建, 王利才, 狄源水, 简涛, 谢谠, 王永良.  自适应能量检测器及在失配信号检测中的应用(英文) . 雷达学报, doi: 10.12000/JR14132
    [16] 丁昊, 薛永华, 黄勇, 关键.  均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法 . 雷达学报, doi: 10.12000/JR14133
    [17] 赵耀东, 吕晓德, 李纪传, 向茂生.  无源雷达多普勒谱分析实现动目标检测的方法 . 雷达学报, doi: 10.3724/SP.J.1300.2012.20081
    [18] 陈小龙, 关键, 何友.  微多普勒理论在海面目标检测中的应用及展望 . 雷达学报, doi: 10.3724/SP.J.1300.2012.20102
    [19] 郑世超, 宋红军, 刘亚波, 闫贺, 吴琨.  广域监视动目标检测模式下动目标快速定位误差分析 . 雷达学报, doi: 10.3724/SP.J.1300.2013.13076
    [20] 张丹丹, 仇晓兰, 胡东辉, 丁赤飚.  基于运动目标检测的同步轨道星-空双站SAR 杂波特性分析 . 雷达学报, doi: 10.3724/SP.J.1300.2013.13006
  • 加载中
图(8) / 表 (1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  13
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2020-12-25
  • 网络出版日期:  2021-01-13

部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法

doi: 10.12000/JR20140
    基金项目:  国家自然科学基金(61971412)
    作者简介:

    闫林杰(1992–),女,山东青岛人,中国科学院声学研究所博士,主要研究方向为信号检测与估计,雷达、声呐信号检测。E-mail: yanlinjie16@163.com

    郝程鹏(1975–),男,中国科学院声学研究所研究员,博士生导师。国防科技卓越青年科学基金获得者,IEEE Senior Member、中高会智能信息处理产业化分会副理事长、中国电子学会青年科学家俱乐部会员,担任SCI源刊IEEE Access, EURASIP Journal on Advances in Signal Processing和Signal, Image and Video Processing副主编。主要从事雷达、水声信号处理相关研究。E-mail: haochengp@mail.ioa.ac.cn

    殷超然(1996–),男,陕西西安人,中国科学院声学研究所博士生,主要研究方向为统计信号处理与自适应目标检测。E-mail: yinchaoran18@mails.ucas.ac.cn

    孙苇轩(1997–),女,内蒙古赤峰人,中国科学院声学研究所硕士生。主要研究方向为空时自适应处理。E-mail: sunweixuan@mail.ioa.ac.cn

    侯朝焕(1936–),男,四川自贡人,中国科学院声学研究所研究员,博士生导师。1958年于北京大学物理系获得学士学位,现担任中国科学院大学教授。主要研究方向为信号信息处理、水声学。目前已发表论文200余篇。E-mail: hch@mail.ioa.ac.cn

    通讯作者: 郝程鹏 haochengp@mail.ioa.ac.cn
  • 责任主编:谢文冲 Corresponding Editor: XIE Wenchong
  • 1在本文中,将接收回波中目标信号采用目标能量泄漏采样模型、干扰信号采用斜对称先验结构的接收信号模型统称为斜对称泄漏模型。
  • 中图分类号: TN957.51

摘要: 针对部分均匀高斯干扰环境下的点目标检测问题,该文基于广义似然比准则(GLRT)提出一种适用于空间对称线阵的修正GLRT检测方法。考虑到采样时存在的目标能量泄漏,在接收信号建模时采用目标能量泄漏采样模型弥补泄漏损失,并基于干扰协方差矩阵的斜对称结构降低对辅助数据的需求,最终联合待检测数据和辅助数据实现未知参数的估计,得到兼具有良好目标检测和距离估计性能的斜对称修正GLRT检测方法。仿真结果表明,该方法不仅在部分均匀环境下具有恒虚警特性,而且在辅助数据数量受限时,相比其同类型的检测方法具有1 dB以上的检测性能优势。

注释:
1)  责任主编:谢文冲 Corresponding Editor: XIE Wenchong
2)  1在本文中,将接收回波中目标信号采用目标能量泄漏采样模型、干扰信号采用斜对称先验结构的接收信号模型统称为斜对称泄漏模型。

English Abstract

闫林杰, 郝程鹏, 殷超然, 等. 部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法[J]. 雷达学报, 待出版. doi:  10.12000/JR20140
引用本文: 闫林杰, 郝程鹏, 殷超然, 等. 部分均匀环境下适用于空间对称线阵的修正广义似然比检测方法[J]. 雷达学报, 待出版. doi:  10.12000/JR20140
YAN Linjie, HAO Chengpeng, YIN Chaoran, et al. Modified generalized likelihood ratio test detection based on a symmetrically spaced linear array in partially homogeneous environments[J]. Journal of Radars, in press. doi:  10.12000/JR20140
Citation: YAN Linjie, HAO Chengpeng, YIN Chaoran, et al. Modified generalized likelihood ratio test detection based on a symmetrically spaced linear array in partially homogeneous environments[J]. Journal of Radars, in press. doi:  10.12000/JR20140
    • 近年来,高斯干扰背景下的多通道点目标自适应检测技术在机载雷达领域受到越来越多的关注。早在1973年,Brennan等人[1]就开始了多通道信号检测的研究,随后王永良等人[2]也开展了相关研究工作,并首次在机载雷达领域提出空时自适应处理理论。该技术通过在空-时域进行联合滤波,有效地补偿了平台的运动效应,具有出色的杂波抑制性能。在此基础上,以杂波抑制和目标检测为主要目的的空时自适应检测(Space-Time Adaptive Detection, STAD)技术[3]得到快速发展,许多经典的检测方法被不断提出,主要包括广义似然比检测(Generalized Likelihood Ratio Test, GLRT)[4,5]、自适应匹配滤波检测(Adaptive Matched Filter, AMF)[6]、Rao[7,8]检测和Wald[8,9]检测等。特别地,这些方法均可以自适应地调整检测阈值以维持虚警概率(Probability of false alarm, ${{{P}}_{\rm{fa}}}$)不随外界均匀干扰环境变化,具有恒虚警(Constant False Alarm Rate, CFAR)特性[10]。然而受信号能量起伏、杂波散射等因素的影响,实际应用中均匀辅助数据数量十分有限,由此部分均匀环境(Partially Homogeneous Environment, PHE)下的CFAR检测方法提出,如自适应相干估计器(Adaptive Coherence Estimator, ACE)[11]等。这里部分均匀指待检测数据与辅助数据的干扰协方差矩阵结构相同仅差一个未知的能量比例因子。

      以上STAD方法需要对高维度的协方差矩阵进行估计和求逆,对辅助数据的需求量大且计算复杂度高。为解决这一问题,许多改进方法被提出。文献[12,13]指出当雷达系统使用空间对称分布的线阵时,得到的干扰协方差矩阵具有先验的斜对称结构,即矩阵的元素关于主对角线共轭对称,关于副对角线对称。该先验知识意味着只需使用原来一半的参数就可以表征未知的干扰协方差矩阵,大大降低了对辅助数据数量的依赖。基于该特性,一系列斜对称检测方法提出。例如,文献[14]基于GLRT准则设计了部分均匀环境下的斜对称GLRT(Persymmetric GLRT, P-GLRT)方法,文献[15]基于两步GLRT准则提出了斜对称ACE (Persymmetric ACE, P-ACE)方法,这些方法均提高了经典STAD在辅助数据数量受限时的检测性能。针对辅助数据数量不足时的检测问题,基于降秩技术[16]、信号子空间变换技术[17]、Krylov子空间技术[18]以及利用杂波谱的对称特性、贝叶斯模型等其他先验知识[19-26]的STAD方法也可以作为降低辅助数据数量的有效手段。

      此外,现有的STAD技术大都基于理想的目标采样模型,即采样点恰好落在目标回波匹配滤波输出的峰值处,不存在任何能量泄漏。然而,当一个点目标跨坐于两个连续的距离单元时,采样时刻很难完全对准峰值位置。为弥补能量泄漏损失,中国科学院声学研究所郝程鹏课题组与意大利教授Orlando等人[27,28]基于目标能量泄漏采样模型提出了一系列修正方法,主要包括均匀环境下的修正GLRT (Modified GLRT, M-GLRT)、修正AMF (Modified AMF, M-AMF)以及部分均匀环境下的定位GLRT (GLRT with Localization Capabilities for PHE, GLRT-LC-PHE)、修正ACE (Modified ACE, M-ACE)等检测方法,这些检测方法除了提高目标检测能力外,还兼具对待检测单元内目标距离的估计能力。文献[29-31]在这些方法的基础上联合使用干扰协方差矩阵的斜对称特性,提出了部分均匀环境下的斜对称修正AMF (Persymmetric Modified AMF for PHE, PM-AMF-PHE)和改进的PM-AMF-PHE (Modified PM-AMF-PHE, MPM-AMF-PHE)等检测方法,进一步提高了小样本辅助数据下的检测性能。

      本文在MPM-AMF-PHE[31]方法的工作基础上,在部分均匀高斯干扰背景下提出了一种适用于空间对称线阵的斜对称修正GLRT (PM-GLRT for PHE, PM-GLRT-PHE)检测方法。首先给出了与MPM-AMF-PHE相似的离散接收信号模型,即对目标信号采用目标能量泄漏采样模型,干扰信号采用斜对称先验结构。在检测方法的设计阶段,相比MPM-AMF-PHE方法,PM-GLRT-PHE方法在一步GLRT准则下联合使用待检测数据和辅助数据得到部分均匀环境中能量比例因子$\gamma $的数值解法,代替了MPM-AMF-PHE方法中仅使用待检测数据的次优估计结果,进一步提高了参数的估计精度以及对回波数据的利用率,进而获得更优的目标检测性能。最后,将所有未知参数的最大似然估计(Maximum Likelihood Estimate, MLE)结果代替理论值代入GLRT检测统计量中,得到最终的PM-GLRT-PHE检测方法。仿真结果显示,PM-GLRT-PHE的${{{P}}_{\rm{fa}}}$相对于背景参数的变化并不敏感,具有CFAR特性,并且相比于其同类型的检测方法在辅助数据数量受限时有着稳健的检测性能优势。

    • 本节对接收回波的离散时间信号模型进行介绍。考虑一个由${N_a}$个阵元组成的均匀线列阵,发射的时域脉冲数为${N_p}$,每个阵元的发射信号可以简单写为

      $${\rm{Re}}\left\{ {A\sum\limits_{i = 1}^{{N_p}} {p(t - (i - 1)T){{\rm{e}}^{{\rm{j}}2\pi {f_c}t}}} } \right\},\,\,t \in [0,{N_p}T)$$ (1)

      其中,${\rm{Re}}()$表示取实部运算,$A$表示复振幅,$p(t)$表示矩形脉冲,$T$为脉冲重复间隔,${f_c}$为载波频率。接收信号经过下变频到基带、匹配滤波、采样等一系列预处理后,得到${{N}} = {N_a}{N_p}$维复矢量。假设${N_p} = 1$,则单脉冲下第$i$个距离单元的回波数据可描述为

      $$\begin{split} & {H_0}:{{{z}}_i} = {{{n}}_i} \in {C^{N \times 1}} \\ & {H_1}:{{{z}}_i} = {{{s}}_i} + {{{n}}_i} \in {C^{N \times 1}} \end{split} $$ (2)

      其中,$C$表示复数域,${H_0}$${H_1}$分别表示无目标和有目标的假设,${{{n}}_i}$表示仅包含白噪声和杂波的复高斯干扰矢量,${{{s}}_i}$表示目标信号矢量。由文献[31]可知,当存在能量泄漏时,目标能量会泄漏到相邻距离单元中,由此得到由邻近距离单元组成的目标能量泄漏采样模型

      $$ {{{s}}_i} = \left\{ {\begin{aligned} & {\alpha {\chi _p}( - \varepsilon ,f){{v}}, \,\;\;\quad i = l} \\ & {\alpha {\chi _p}({T_p} - \varepsilon ,f){{v}}, \; i = l + 1} \\ & {0,\,\qquad\qquad\qquad\;\; i \ne l,l + 1} \end{aligned}} \right. $$ (3)

      其中,$\alpha $表示目标信号的复幅值因子,${\chi _p}()$表示复模糊度函数,${T_p}$为信号脉宽,$\varepsilon \in [ - \,{T_p}/2,\,{T_p}/2]$为导致目标能量泄漏的剩余时间延迟,$f$为多普勒频移,${{v}} = \dfrac{1}{{\sqrt {{N_a}} }} \times {[1\, {{\rm{e}}^{{\rm{j}}2\pi {\nu _s}}}\, ···\, {{\rm{e}}^{{\rm{j}}2\pi ({N_a} - 1){\nu _s}}}]^{\rm{T}}}$表示归一化空域导向矢量,${\nu _s}$表示归一化空间频率,${()^{\rm{T}}}$表示转置运算,$l$为待检测单元序号。

    • 基于离散时间模型,目标能量泄漏采样模型下的目标检测问题可表述为以下2元假设检验

      $$\left. \begin{aligned} &{{H_0}:\left\{ {\begin{aligned} &{{{{z}}_i} = {{{n}}_i},\,\,i = l - 1,l,l + 1} \\ & {{{{z}}_k} = {{{n}}_k},k = l + 2,···,l + K + 1} \end{aligned}} \right.} \\ & {{H_1}:\left\{ \begin{aligned} & - {T_p}/2 \le \varepsilon < 0, \\ &\quad{{{z}}_i} =\left\{ {\begin{aligned} &{\alpha {\chi _p}( - {T_p} - \varepsilon ,f){{v}} + {{{n}}_i},i = l - 1} \\ & {\alpha {\chi _p}( - \varepsilon ,f){{v}} + {{{n}}_i},\qquad i = l} \\ &{{{{n}}_i},\qquad\qquad\qquad\qquad\;\; i = l + 1} \end{aligned}} \right. \\ & 0 \le \varepsilon \le {T_p}/2, \\ &\quad{{{z}}_i} =\left\{ {\begin{aligned} &{{{{n}}_i},\qquad\qquad\qquad\qquad i = l - 1} \\ & {\alpha {\chi _p}( - \varepsilon ,f){{v}} + {{{n}}_i},\quad\; i = l} \\ &{\alpha {\chi _p}({T_p} - \varepsilon ,f){{v}} + {{{n}}_i},i = l + 1} \end{aligned}} \right. \\ & {{{{z}}_k} = {{{n}}_k},k = l + 2,···,l + K + 1} \end{aligned} \right.} \end{aligned}\right\}\!\!\! $$ (4)

      其中,${{{z}}_i} \in {C^{N \times 1}}$表示待检测数据矢量。${{{n}}_k}$,${{{z}}_k} \in {C^{N \times 1}}$表示从待检测数据相邻的距离单元收集到的$K$个独立同分布的辅助数据,为保证干扰协方差矩阵的非奇异性,需满足$K \ge N$${{{n}}_i}$为待检测数据中的干扰成分,它与${{{z}}_k}$之间统计独立,且均服从零均值的多元复高斯分布,即${{{n}}_i} \sim {\rm{C}}{{\rm{N}}_N}({\bf{0}},\gamma {{M}})$${{{z}}_k} \sim {\rm{C}}{{\rm{N}}_N} ({\bf{0}},{{M}})$,唯一不同的是两者协方差矩阵相差一个未知的能量比例因子$\gamma $($\gamma > 0$)。

      此外在使用空间对称线阵的主动雷达检测系统中,其干扰协方差矩阵${{M}}$和导向矢量${{v}}$均具有斜对称特性。即满足${{M}} = {{{J}}_N}{{{M}}^ * }{{{J}}_N},\,\,{{v}} = {{{J}}_N}{{{v}}^ * }$,其中${()^ * }$表示共轭运算,${{{J}}_N}$N维置换矩阵,有

      $$ {{{J}}_N}(i,j) = \left\{ {\begin{aligned} &{1,\,\;\;\;\;i + j = N + 1}\\ &{0,\,\;\;\;\;{\text{其他}}} \end{aligned}} \right. $$ (5)
    • 为求解式(6)中的假设检验问题,下面采用GLRT准则设计斜对称泄漏模型下的自适应检测方法PM-GLRT-PHE。MPM-AMF-PHE方法单独使用待检测数据估计未知参数$\gamma $,得到的参数估计精度有限,限制了该方法的检测性能。为进一步提升辅助数据数量受限情况下的目标检测性能,PM-GLRT-PHE将联合待检测数据和辅助数据实现检测统计量的推导和未知参数${{M}}$, ${\alpha}$$\gamma $的MLE,以获得更高的检测性能。为便于推导,令${{{Z}}_K} = \left[ {{{{z}}_1}\,{{{z}}_2}\cdots\,{{{z}}_K}} \right] \in {C^{N \times K}}$表示辅助数据矩阵,${{Z}} = [ {{{z}}_{l - 1}}\, {{{z}}_l}\,{{{z}}_{l + 1}}\,{{{Z}}_K} ] \in {C^{N \times (3 + K)}}$表示联合数据矩阵。GLRT准则下的检测表达式为

      $$\frac{{\mathop {\max}\limits_{\varepsilon ,{{\alpha}} ,\gamma ,{{M}}} {f_1}({{Z}};\varepsilon ,{{\alpha}} ,\gamma ,{{M}})}}{{\mathop {\max }\limits_{\gamma ,{{M}}} {f_0}({{Z}};\gamma ,{{M}})}}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{H_1}} \\ > \end{array}} \\ {\begin{array}{*{20}{c}} < \\ {{H_0}} \end{array}} \end{array}\eta $$ (6)

      其中,$\eta $表示一定${{{P}}_{\rm{fa}}}$下的检测阈值,根据文献[31]可知,${f_j}({{Z}};j\varepsilon ,j{{\alpha}} ,\gamma ,{{M}})$表示待检测数据和辅助数据在$H{}_j,j = 0,1$假设下的概率密度函数

      $$ \begin{split} {f_j}({{Z}};j\varepsilon ,j{{\alpha}} ,\gamma ,{{M}}) =\,& {\left( {\frac{{{\gamma ^{ - 3N/(K + 3)}}}}{{{\pi ^N}{\rm{det}}({{M}})}}} \right)^{K + 3}} \exp\{ - {\rm{tr}}\\ & \left[ {{{{M}}^{ - 1}}\!\left(\! {\frac{1}{\gamma }{{F}}(j{{\alpha}} ){{{F}}^{\rm{H}}}(j{{\alpha}} ) \!+\! {{S}}} \!\right)} \right] \}\\ \end{split} $$ (7)

      其中,${\rm{det}}()$, ${\rm{tr}}()$${()^{\rm{H}}}$分别表示矩阵的行列式、求迹和共轭转置运算,${{S}} = \left( {{{{Z}}_K}{{Z}}_K^{\rm{H}} + {{{J}}_N}{{({{{Z}}_K}{{Z}}_K^{\rm{H}})}^ * }{{{J}}_N}} \right)\!\Big/2$,${{F}}(j{{\alpha}} ) = {{X}} - j{{v\alpha}} {{{D}}^{\rm{T}}}$, ${{X}} = [ {{{z}}_{{e_{_{l - 1}}}}}\,{{{z}}_{{o_{_{l - 1}}}}}\,{{{z}}_{{e_{_l}}}}\,{{{z}}_{{o_{_l}}}}\,{{{z}}_{{e_{_{l + 1}}}}} \,{{{z}}_{{o_{_{l + 1}}}}} ]$, ${{{z}}_{{e_i}}} = ({{{z}}_i} + {{{J}}_N}{{z}}_i^ * )/2$, $\,{{{z}}_{{o_i}}} = ({{{z}}_i} - {{{J}}_N}{{z}}_i^ * )/2$, $i = l - 1,\,l,\,l + 1$, ${{\alpha}} = \left[ {\alpha \,\,{\alpha ^ * }} \right]$,且有

      $$\begin{split} & {{D}} = \\ & \left\{ {\begin{aligned} & {\left[\!\! {\begin{array}{*{20}{l}} {{\chi _p}({t_1},f)\,\,\,\,{\chi _p}({t_1},f)\;\,\,\,\,\,{\chi _p}({t_2},f)\,\,\,\,{\chi _p}({t_2},f)\;\,\,\,\,\,\,0\;\,\,0} \\ {\chi _p^ * ({t_1},f)\,\, - \chi _p^ * ({t_1},f)\,\,\chi _p^ * ({t_2},f)\,\, - \chi _p^ * ({t_2},f)\,\,0\,\,\,0} \end{array}}\!\! \right]^{\rm{T}}}, \\ \\ & \quad\;\, - {T_p}/2\,\, \le \,\,\varepsilon \,\, < \,0 \\ & {\left[\!\! {\begin{array}{*{20}{l}} {0\,\,\,0\,\,\,{\chi _p}({t_2},f)\,\,\,\;\,{\chi _p}({t_2},f)\;\,\,\,{\chi _p}({t_3},f)\;\,\,\,\,\;{\chi _p}({t_3},f)} \\ {0\,\,\,0\,\,\,\chi _p^ * ({t_2},f)\,\, - \chi _p^ * ({t_2},f)\,\,\chi _p^ * ({t_3},f)\,\, - \chi _p^ * ({t_3},f)} \end{array}} \!\!\!\right]^{\rm{T}}}, \\ & \quad\; 0\,\, \le \,\,\varepsilon \,\, \le \,{T_p}/2 \end{aligned}} \right. \end{split}$$ (8)

      其中,${t_1} = - {T_p} - \varepsilon ,\,\,{t_2} = - \varepsilon ,\,\,{t_3} = {T_p} - \varepsilon $为剩余时间延迟。

      根据文献[31],参数${{{M}}_j}$$H{}_j,j = 0,1$假设下的MLE结果为

      $${\tilde {{M}}_j} = \frac{1}{{K + 3}}\left( {\frac{1}{{{\gamma _j}}}{{F}}(j{{\alpha}} ){{{F}}^{\rm{H}}}(j{{\alpha}} ) + {{S}}} \right)$$ (9)

      其中,${\gamma _j},j = 0,1$表示$H{}_j$假设下的能量比例因子。

      将式(9)代入式(6),此时的GLRT检测等价为

      $$ \mathop {\max}\limits_{\varepsilon ,\gamma ,{{\alpha}} } \frac{{\gamma _0^{\tfrac{{3N}}{{3 + K}}}\det \left( {\dfrac{1}{{{\gamma _0}}}{{X}}{{{X}}^{\rm{H}}} + {{S}}} \right)}}{{\gamma _1^{\tfrac{{3N}}{{3 + K}}}\det\left( {\dfrac{1}{{{\gamma _1}}}{{F}}({{\alpha}} ){{{F}}^{\rm{H}}}({{\alpha}} ) + {{S}}} \right)}}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{H_1}} \\ > \end{array}} \\ {\begin{array}{*{20}{c}} < \\ {{H_0}} \end{array}} \end{array}\eta $$ (10)

      由文献[29]可知,对${{\alpha}} $的MLE为

      $$ \begin{split} \tilde {{\alpha}} =& \mathop {\arg \min }\limits_{{\alpha}} \gamma _1^{\tfrac{{3N}}{{3 + K}}}\det\left( {\frac{1}{{{\gamma _1}}}{{F}}({{\alpha}} ){{{F}}^{\rm{H}}}({{\alpha}} ) + {{S}}} \right) \\ =& \mathop {\arg \min }\limits_{{\alpha}} \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{S}} \right) \\ & \cdot\det\left(\! {{\gamma _1}{{{I}}_6} + {{{F}}^{\rm{H}}}({{\alpha}} ){{{S}}^{ - 1/2}}\left( {{{P}}_s^ \bot \!+\! {{{P}}_s}} \right){{{S}}^{ - 1/2}}{{F}}\!({{\alpha}} )} \!\right) \end{split} $$ (11)

      其中,${{{P}}_s} = {{{S}}^{ - 1/2}}{{v}}{{{v}}^{\rm{H}}}{{{S}}^{ - 1/2}}/({{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}})$表示由${{{S}}^{ - 1/2}}{{v}}$张成的子空间的投影矩阵,${{P}}_s^ \bot = {{{I}}_N} - {{{P}}_s}$表示矩阵${{{P}}_s}$的正交补,${{{I}}_6}$${{{I}}_N}$分别表示6维和$N$维的单位矩阵。为了化简式(11),将第2个行列式展开后的前两项写作

      $$ \begin{split} & {\gamma _1}{{{I}}_6} + {{{F}}^{\rm{H}}}({{\alpha}} ){{{S}}^{ - 1/2}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{F}}({{\alpha}} ) \\ & \quad = {\gamma _1}{{{I}}_6} + {\left( {{{X}} - {{v}}{{\alpha}} {{{D}}^{\rm{T}}}} \right)^{\rm{H}}}{{{S}}^{ - 1/2}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}\\ & \qquad \cdot \left( {{{X}} - {{v\alpha}} {{{D}}^{\rm{T}}}} \right) \\ & \quad = {\gamma _1}{{{I}}_6} + {{{X}}^{\rm{H}}}{{{S}}^{ - 1/2}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{X}} - {{{X}}^{\rm{H}}}{{{S}}^{ - 1/2}}{{P}}_s^ \bot \\ & \quad\quad \cdot{{{S}}^{ - 1/2}}{{v\alpha}} {{{D}}^{\rm{T}}} - {{{D}}^*}{{{\alpha}} ^{\rm{H}}}{\left( {{{{S}}^{ - 1/2}}{{v}}} \right)^{\rm{H}}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{X}}\\ & \quad\quad + {{{D}}^*}{{{\alpha}} ^{\rm{H}}}{\left( {{{{S}}^{ - 1/2}}{{v}}} \right)^{\rm{H}}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{v\alpha}} {{{D}}^{\rm{T}}}\\[-17pt] \end{split} $$ (12)

      在式(11)中已经提到,矩阵${{P}}_s^ \bot $为由${{{S}}^{ - 1/2}}{{v}}$张成子空间的正交投影矩阵,因此${{P}}_s^ \bot {{{S}}^{ - 1/2}}{{v}} = {\bf{0}}$。则式(12)可进一步化简得

      $$ \begin{split} & {\gamma _1}{{{I}}_6} + {{{F}}^{\rm{H}}}({{\alpha}} ){{{S}}^{ - 1/2}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{F}}({{\alpha}} ) \\ & \quad = {\gamma _1}{{{I}}_6} + {{{X}}^{\rm{H}}}{{{S}}^{ - 1/2}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{X}} \end{split} $$ (13)

      其中,令${{Q}} = {\gamma _1}{{{I}}_6} + {{{X}}^{\rm{H}}}{{{S}}^{ - 1/2}}{{P}}_s^ \bot {{{S}}^{ - 1/2}}{{X}}$,由此,式(11)等号右边可进一步表示为

      $$ \begin{split} & \gamma _1^{\tfrac{{3N}}{{3 + K}}}\det\left( {\frac{1}{{{\gamma _1}}}{{F}}({{\alpha}} ){{{F}}^{\rm{H}}}({{\alpha}} ) + {{S}}} \right) \\ &\quad = \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{S}} \right)\\ & \qquad \cdot\det \left( {{{Q}} + {{{F}}^{\rm{H}}}({{\alpha}} ){{{S}}^{ - 1/2}}{{{P}}_s}{{{S}}^{ - 1/2}}{{F}}({{\alpha}} )} \right) \\ &\quad = \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{S}} \right)\det\left( {{Q}} \right) \\ & \qquad \cdot\left( {1 + \frac{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{F}}({{\alpha}} ) {{{Q}}^{ - 1}}{{{F}}^{\rm{H}}}({{\alpha}} ){{{S}}^{ - 1}}{{v}}}}{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}}} \right) \!\!\!\!\! \end{split} $$ (14)

      参考文献[29,31]可得$ {{\alpha}} $的估计结果为

      $$ {{\tilde{{\alpha}}}} = \frac{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}}{{{Q}}^{ - 1}}{{{D}}^ * }{{\left[ {{{{D}}^{\rm{T}}}{{{Q}}^{ - 1}}{{{D}}^ * }} \right]}^{ - 1}}}}{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}} $$ (15)

      将式(15)代入式(14),式(14)等价为

      $$ \begin{split} & \gamma _1^{\tfrac{{3N}}{{3 + K}}}\det\left( {\frac{1}{{{\gamma _1}}}{{F}}(\tilde {{\alpha}} ){{{F}}^{\rm{H}}}(\tilde {{\alpha}} ) + {{S}}} \right) \\ & \quad = \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{S}} \right)\det \left( {{Q}} \right)\left( {1 + {{B}} - {{C}}} \right) \\ & \qquad \cdot\propto \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{Q}} \right)\left( {1 + {{B}} - {{C}}} \right) \end{split} $$ (16)

      其中,

      $$ {{B}} = \frac{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}}{{{Q}}^{ - 1}}{{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}}{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}} $$ (17)
      $$ \begin{split} & {{C}} \\ & = \frac{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}}{{{Q}}^{ - 1}}{{{D}}^ * }{{\left(\! {{{{D}}^{\rm{T}}}{{{Q}}^{ - 1}}{{{D}}^ * }} \!\right)}^{ - 1}}\!{{{D}}^{\rm{T}}}\!{{{Q}}^{ - 1}}{{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}}{{{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}} \end{split} $$ (18)

      接下来求$H{}_1$假设下$\gamma $的MLE,得到

      $${\tilde \gamma _1} = \mathop {\arg \min }\limits_{{\gamma _1}} \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{Q}} \right)\left( {1 + {{B}} - {{C}}} \right)$$ (19)

      ${{Q}}$特征分解得${{Q}} = {{U}}\left( {{\gamma _1}{{{I}}_6} + {{\varLambda}} } \right){{{U}}^{\rm{H}}}$,其中${{U}} \in {C^{6 \times 6}}$为酉矩阵,${{\varLambda}} $为特征值为${\lambda _1},{\lambda _2},···,{\lambda _6}$的对角阵。将特征分解代入式(19)中

      $$ \begin{split} & \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{Q}} \right)\left( {1 + {{B}} - {{C}}} \right) \\ &\quad = \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\det\left( {{{U}}\left( {{\gamma _1}{{{I}}_6} + {{\varLambda}} } \right){{{U}}^{\rm{H}}}} \right)\\ & \qquad \cdot \left( {1 + {{E}} - {{G}}} \right) \end{split} $$ (20)

      其中,${{E}}{\rm{ = }}\dfrac{{{{{V}}^{\rm{H}}}{{V}}}}{{{\gamma _1}{{{I}}_6} + {{\varLambda}} }}$, ${{G}}{\rm{ = }}\dfrac{{{{{V}}^{\rm{H}}}{{\left( {{\gamma _1}{{{I}}_6} + {{\varLambda}} } \right)}^{ - 1}}{{{WW}}^{\rm{H}}}{{\left( {{\gamma _1}{{{I}}_6} + {{\varLambda}} } \right)}^{ - 1}}{{V}}}}{{{{{W}}^{\rm{H}}}{{\left( {{\gamma _1}{{{I}}_6} + {{\varLambda}} } \right)}^{ - 1}}{{W}}}}$, ${{W}}{\rm{ = }} {{{U}}^{\rm{H}}}{{{D}}^ * } = {\left[ {\begin{array}{*{20}{c}} {{x_1}\,\cdots\,{x_6}} \\ {{y_1}\,\cdots\,{y_6}} \end{array}} \right]^{\rm{T}}} \in {C^{6 \times 2}}$,${{V}}{\rm{ = }}\dfrac{{{{{U}}^{\rm{H}}}{{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}}}{{\sqrt {{{{v}}^{\rm{H}}}{{{S}}^{ - 1}}{{v}}} }} = {\left[ {{v_1}\,{v_2}\cdots\,{v_6}} \right]^{\rm{T}}} \in {C^{6 \times 1}}$

      将式(20)进一步化简得

      $$ \begin{split} \!\! {h_1}({\gamma _1}) =\,& \gamma _1^{\tfrac{{3N}}{{3 + K}} - 6}\prod\limits_{i = 1}^6 ({\gamma _1} + {\lambda _i})\\ & \cdot \left[ {1 + e - \frac{{(qb - gd)m + ( - qc + ga)n}}{{ab - cd}}} \right]\!\!\!\!\! \end{split} $$ (21)

      其中,$a = \displaystyle\sum\limits_{i = 1}^6 {\frac{{{{\left| {{x_i}} \right|}^2}}}{{{\gamma _1} + {\lambda _i}}}} $, $b = \displaystyle\sum\limits_{i = 1}^6 {\frac{{{{\left| {{y_i}} \right|}^2}}}{{{\gamma _1} + {\lambda _i}}}} $, $c = \displaystyle\sum\limits_{i = 1}^6 {\frac{{x_i^ * {y_i}}}{{{\gamma _1} + {\lambda _i}}}} $, $d = {c^ * }$, $e = \displaystyle\sum\limits_{i = 1}^6 {\frac{{{{\left| {{v_i}} \right|}^2}}}{{{\gamma _1} + {\lambda _i}}}} $, $q = \displaystyle\sum\limits_{i = 1}^6 {\frac{{v_i^ * {x_i}}}{{{\gamma _1} + {\lambda _i}}}} $, $g = \displaystyle\sum\limits_{i = 1}^6 {\frac{{v_i^ * {y_i}}}{{{\gamma _1} + {\lambda _i}}}} $, $m = {q^ * }$, $n = {g^ * }$, $\left| {\;} \right|$表示求绝对值。

      通过对式(21)求关于${\gamma _1}$的1阶导数并置0,可得到估计值${\tilde \gamma _1}$。需要说明的是,${\tilde \gamma _1}$未给出解析解的形式,因此需要采用数值方法求解,例如可以采用fsolve函数求解此非线性方程。

      基于式(10),在$H{}_0$假设下对${\gamma _0}$的MLE为

      $$ {\tilde \gamma _0} = \mathop {\arg \min }\limits_{{\gamma _0}} \gamma _0^{\tfrac{{3N}}{{3 + K}}}\det \left( {\frac{1}{{{\gamma _0}}}{{X}}{{{X}}^{\rm{H}}} + {{S}}} \right) $$ (22)

      化简得到

      $$ \begin{split} \quad & \gamma _0^{\tfrac{{3N}}{{3 + K}}}\det \left( {\frac{1}{{{\gamma _0}}}{{{XX}}^{\rm{H}}} + {{S}}} \right) \\ & \quad = \gamma _0^{\tfrac{{3N}}{{3 + K}}}\det\left( {{S}} \right)\det \left( {\frac{1}{{{\gamma _0}}}{{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}} + {{{I}}_6}} \right) \\ & \quad = \gamma _0^{\tfrac{{3N}}{{3 + K}} - 6}\det \left( {{S}} \right)\det \left( {{\gamma _0}{{{I}}_6} + {{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}}} \right) \\ & \quad \propto \gamma _0^{\tfrac{{3N}}{{3 + K}} - 6}\det \left( {{\gamma _0}{{{I}}_6} + {{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}}} \right) \end{split} $$ (23)

      ${{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}}$进行特征分解,得${{{X}}^{\rm{H}}}{{{S}}^{ - 1}}{{X}} = {{{U}}_0}{{{\varLambda}} _0}{{U}}_0^{\rm{H}}$。其中${{{U}}_0} \in {C^{6 \times 6}}$为酉矩阵,${{{\varLambda}} _0}$为特征值为${\lambda _{0,1}},{\lambda _{0,2}},···,{\lambda _{0,6}}$的对角阵。将其代入式(23),化简得到

      $${h_0}({\gamma _0}) = \gamma _0^{\tfrac{{3N}}{{3 + K}} - 6}\prod\limits_{i = 1}^6 {({\gamma _0} + {\lambda _{0,i}})} $$ (24)

      同样对式(24)求关于${\gamma _0}$的1阶导数并置0,通过采用数值方法可以获得估计值${\tilde \gamma _0}$

      将式(15)、式(21)和式(24)得到的估计结果代替式(10)中的真实值,最终得部分均匀环境下的PM-GLRT-PHE检测方法

      $$ \mathop {\max }\limits_\varepsilon \frac{{\tilde \gamma _0^{\tfrac{{3N}}{{3 + K}}}\det \left( {\dfrac{1}{{{{\tilde \gamma }_0}}}{{{XX}}^{\rm{H}}} + {{S}}} \right)}}{{\tilde \gamma _1^{\tfrac{{3N}}{{3 + K}}}\det \left( {\dfrac{1}{{{{\tilde \gamma }_1}}}{{F}}(\tilde {{\alpha}} ){{{F}}^{\rm{H}}}(\tilde {{\alpha}} ) + {{S}}} \right)}}\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{H_1}} \\ > \end{array}} \\ {\begin{array}{*{20}{c}} < \\ {{H_0}} \end{array}} \end{array}\eta $$ (25)

      需要说明的是,由于文中未能给出对剩余时延$\varepsilon $估计的解析解,进而采用格搜索方法进行估计。格搜索精度定义为$\varDelta = {{{T}}_p}/(2{N_\varepsilon })$,其中$2{N_\varepsilon }$为均匀分布在$[ - \,{T_p}/2,\,{T_p}/2]$上的取值。由估计结果$\tilde \varepsilon $可以得到目标距离估计为$\left( {{t_{\min }} + l{T_p} + \tilde \varepsilon } \right){{{c_0}}}/{2}$,其中${t_{\min }}$为采样初始时刻,${c_0} = 3 \times {10^8}$ m/s为电磁波传播速度,且估计结果$\tilde \varepsilon $的精确度最终体现为待检测距离单元内的目标距离估计均方根误差上,即${\delta _{\rm{rms}}} = \sqrt {\displaystyle\sum\nolimits_{i = 1}^{{n_t}} {{{\left( {(\tilde \varepsilon - \varepsilon ) \times {{10}^{ - 6}} \times {c_0}/2} \right)}^2}} /{n_t}} $, ${n_t}$为仿真次数。

    • 下面采用蒙特卡罗方法分析PM-GLRT-PHE在部分均匀环境下的CFAR特性以及目标检测和距离估计性能。假设系统采用等间距的均匀线列阵,阵元数${N_a} = N = 12$,信号脉宽${T_p}$=$0.2\,\,{\rm{μs}}$,目标的波达角度为0°,多普勒频移$f$=0, ${N_\varepsilon } = 5$,白噪声能量${\sigma ^2}$=1,杂波噪声比(Clutter-to-Noise Ratio, CNR)为30 dB。最后,干扰协方差矩阵建模为${{M}} = {{{I}}_N} + {\rm{CNR}}{{{M}}_c}$,其中${{{M}}_c}(i,j) = {\rho ^{\left| {i - j} \right|}}$为基于指数相关复高斯模型的杂波协方差矩阵,$\rho = 0.9$为一步滞后系数,信号杂波噪声比(Signal-to-Clutter-plus-Noise Ratio, SCNR) ${\rm{SCNR}} = {\left| {{\alpha}} \right|^2}{{{v}}^{\rm{H}}}{{{M}}^{ - 1}}{{v}}/\gamma$

    • 由于以上推导中未能给出检测方法关于${P_{\rm{fa}}}$的解析表达式,为验证PM-GLRT-PHE的CFAR特性,本节给出了${P_{\rm{fa}}}$随着背景参数,即能量比例因子$\gamma $和干扰协方差矩阵M的变化趋势,通过数值变化的平稳程度来体现${P_{\rm{fa}}}$关于这两个参数的鲁棒性。图1给出了PM-GLRT-PHE的${P_{\rm{fa}}}$$\gamma $的变化曲线,假设辅助数据数量受限,即$K = N + 1$,预设${P_{\rm{fa}}} = {10^{ - 3}}$。由图中所示,当$\gamma $由2增大至16时,${P_{\rm{fa}}}$始终稳定在${10^{ - 3}}$左右,这说明${P_{\rm{fa}}}$独立于$\gamma $,即检测方法关于$\gamma $是CFAR的。

      图  1  PM-GLRT-PHE的${P_{\rm{fa}}}$$\gamma $的变化曲线

      Figure 1.  ${P_{\rm{fa}}}$ against $\gamma $ for the PM-GLRT-PHE

      为验证M${P_{\rm{fa}}}$之间的CFAR关系,表1通过固定$\gamma $不变,加入不同数量和波达角度的类噪声干扰产生5种不同的仿真情景,以计算不同M值下检测方法PM-GLRT-PHE的阈值$\eta $。其中$\eta $的仿真次数为$100/{P_{\rm{fa}}}$, $K = N + 1$, $\gamma = 2$, ${P_{\rm{fa}}} = {10^{ - 3}}$,干扰噪声比为30 dB。从表1可见,在不同仿真场景下PM-GLRT-PHE的$\eta $值均稳定在2附近。由于$\eta $${P_{\rm{fa}}}$呈一一对应关系,因而可以说明检测方法的${P_{\rm{fa}}}$不会随着${{M}}$而改变,即该方法关于${{M}}$是CFAR的。此外,为进一步证明PM-GLRT-PHE相对于${{M}}$的CFAR特性,图2给出了${P_{\rm{fa}}}$随杂波协方差矩阵${{{M}}_c}$中参数$\rho $的变化曲线,假设$K = N + 1$, $\gamma = 2$,预设${P_{\rm{fa}}} = {10^{ - 3}}$。结果表明,当$\rho $由0.1增大至0.9时,${P_{\rm{fa}}}$