多平台合成孔径雷达成像算法综述

邢孟道 林浩 陈溅来 孙光才 严棒棒

引用本文:
Citation:

多平台合成孔径雷达成像算法综述

    作者简介: 邢孟道(1975–),男,浙江嵊州人,博士生导师、教授,现任西安电子科技大学前沿交叉研究院副院长。2002年获西安电子科技大学工学博士学位并留校工作,2004年破格评为教授。2018年成为中国电子学会会士。曾获国家杰出青年科学基金、国防科技卓越青年人才基金、中青年科技创新领军人才。曾获陕西省科学技术奖一等奖、陕西省创新团队。主要研究雷达成像,侧重于精细成像、灵活成像和大斜视成像等。先后主持国家973、863计划以及预研等多个项目。近五年在TGRS和JSTAR等国际遥感期刊发表论文113篇,SCI他引1617次,H因子42。培养和协助培养“百优”和“省优”博士论文6篇。任IEEE TGRS副主编、IEEE Fellow等。近五年连续入选Elsevier电子和电气工程领域“中国高被引学者榜单”。E-mail: xmd@xidian.edu.cn;林 浩(1996–),男,浙江嵊州人,西安电子科技大学博士研究生,主要研究机载多模式SAR运动补偿技术与成像等。E-mail: LH_Future1996@163.com;陈溅来(1990–),男,湖南衡阳人,副教授,硕士生导师,现工作于中南大学航空航天学院。2013~2018年在西安电子科技大学雷达信号处理国家重点实验室攻读博士学位,并于2018年获工学博士学位。2018年评为副教授、硕士生导师,2019年获中国电子教育学会优秀博士学位论文提名奖。主要研究机/星载SAR非线性轨迹信号建模与成像。先后主持国家自然科学基金和航天基金等多个项目。近五年在TGRS、JSTAR和GRSL等国际遥感期刊发表论文10余篇。E-mail: jianlaichen@163.com;孙光才(1984–),男,湖北孝感汉川人,博士生导师,副教授,IEEE会员。自2007年以来,一直专注于雷达成像技术的研究,目前为西安电子科技大学“雷达信号处理国家重点实验室”学术骨干。主要从事新体制雷达、雷达成像、动目标成像等研究,已在IEEE Trans. on GRS等国际权威刊物发表学术论文多篇。研究成果曾入围了APSAR2013 Young Scientist Award Competition。曾获得2015年陕西省优秀博士学位论文奖和2015年西安电子科技大学优秀博士学位论文奖。E-mail: gcsun@xidian.edu.cn;严棒棒(1995–),男,江苏宿迁人,西安电子科技大学硕士研究生,主要研究机载滑动聚束SAR成像及GPU实现等。E-mail: Yan_Chrysanthemum@outlook.com.
    通讯作者: 陈溅来 jianlaichen@163.com; 邢孟道 xmd@xidian.edu.cn
  • 基金项目:

    国家自然科学基金(61901531)

  • 中图分类号: TN95

A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar

    Corresponding author: CHEN Jianlai, jianlaichen@163.com; XING Mengdao, xmd@xidian.edu.cn
  • Fund Project: The National Natural Science Foundation of China (61901531)

    CLC number: TN95

  • 摘要: 多平台合成孔径雷达(SAR)是合成孔径雷达极具发展潜力的研究方向之一,该文集中讨论了多平台SAR的成像算法,包括机载SAR、弹载SAR和星载SAR平台。该文首先简要阐述了SAR回波模型的建立,包括“斜距模型和成像模式”,然后综述了近年来机载SAR、弹载SAR和星载SAR成像算法的研究进展,并详细阐述了各平台固有的特性以及面临的挑战,最后对未来多平台SAR成像算法研究的发展趋势进行了展望。
  • 图 1  典型线性轨迹几何模型

    Figure 1.  Geometric model of typical linear trajectory

    图 2  Stripmap,Spotlight和Scan SAR工作几何

    Figure 2.  Working geometry of Stripmap, Spotlight and Scan SAR

    图 3  滑动聚束及TOPS SAR工作几何

    Figure 3.  Working geometry of Sliding Spotlight and TOPS SAR

    图 4  X波段1 m分辨率机载运动补偿前后成像结果图

    Figure 4.  1 m resolution imaging results of airborne SAR before and after motion compensation in X band

    图 5  带宽合成前后的铁路周围成像图

    Figure 5.  Imaging results around the railway before and after band combination

    图 6  采用Two-step进行运动补偿后的RCMC结果

    Figure 6.  The results of RCMC after motion compensation by Two-step algorithm

    图 7  采用文献[54]所提方法进行运动补偿后的RCMC结果

    Figure 7.  The results of RCMC after motion compensation by the algorithm in Ref. [54]

    图 8  0.04 m超高分辨成像结果

    Figure 8.  Imaging results with 0.04 m ultrahigh resolution

    图 9  0.04 m超高分辨局部成像结果

    Figure 9.  Local imaging results with 0.04 m ultrahigh resolution

    图 10  X波段0.1 m大斜视成像结果

    Figure 10.  0.1 m resolution imaging results in squint mode and X band

    图 11  X波段0.8 m分辨率大斜视50°方位重采样成像结果

    Figure 11.  0.8 m resolution imaging results by azimuth resampling with squint angle of 50° and X band

    图 12  Ku波段1.36 m分辨率65°大斜视成像结果

    Figure 12.  1.36 m resolution imaging results in 65° of squint mode in Ku band

    图 13  Ku波段1.5 m大斜视俯冲段处理结果

    Figure 13.  Ku band imaging results of 1.5 m resolution in the case of dive trajectory and squint mode

    图 14  多通道成像流程图

    Figure 14.  The flowchart of multi-channel imaging

    图 15  GF-3号1.5 m条带SAR图像

    Figure 15.  1.5 m resolution SAR imaging results in GF-3

    图 16  Ku波段3.5 m TOPS SAR数据聚焦结果

    Figure 16.  3.5 m resolution TOPS SAR imaging results in Ku band

    图 17  C波段1 m聚束成像结果

    Figure 17.  1 m resolution Spotlight SAR imaging results in C band

    图 18  TerraSAR-X 0.16 m分辨率SAR图像[24]

    Figure 18.  0.16 m resolution SAR imaging of TerraSAR-X[24]

  • [1] HOVANESSIAN S A. Introduction to Synthetic Array and Imaging Radars[M]. Dedham: Artech House, 1980.
    [2] JORDAN R L, HUNEYCUTT B L, and WERNER M. The SIR-C/X-SAR synthetic aperture radar system[J]. Proceedings of the IEEE, 1991, 79(6): 827–838. doi: 10.1109/5.90161
    [3] 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. doi: 10.12000/JR16089WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089
    [4] STOFAN E R, EVANS D L, SCHMULLIUS C, et al. Overview of Results of Spaceborne Imaging Radar-C, X-band Synthetic Aperture Radar (SIR-C/X-SAR)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 817–828. doi: 10.1109/36.406668
    [5] 丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11–16. doi: 10.12000/JR17024DING Chibiao, LIU Jiayin, LEI Bin, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11–16. doi: 10.12000/JR17024
    [6] PITZ W and MILLER D. The TerraSAR-X satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 615–622. doi: 10.1109/tgrs.2009.2037432
    [7] DENG Bin, LI Xiang, WANG Hongqiang, et al. Fast raw-signal simulation of extended scenes for missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 44–48. doi: 10.1109/lgrs.2010.2050675
    [8] CHEN Si, ZHAO Huichang, ZHANG Shuning, et al. An extended nonlinear chirp scaling algorithm for missile borne SAR imaging[J]. Signal Processing, 2014, 99: 58–68. doi: 10.1016/j.sigpro.2013.12.017
    [9] XING Mengdao, JIANG Xiuwei, WU Renbiao, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870–2883. doi: 10.1109/tgrs.2009.2015657
    [10] LI Yake, LIU Chang, WANG Yanfei, et al. A robust motion error estimation method based on raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2780–2790. doi: 10.1109/tgrs.2011.2175737
    [11] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus—a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [12] 胡文龙. 扁率摄动对地球同步轨道SAR成像聚焦的影响分析[J]. 雷达学报, 2016, 5(3): 312–319. doi: 10.12000/JR15121HU Wenlong. Impact of Earth’s oblateness perturbations on geosynchronous SAR data focusing[J]. Journal of Radars, 2016, 5(3): 312–319. doi: 10.12000/JR15121
    [13] 陈溅来. 机/星载SAR非线性轨迹信号建模与成像方法研究[D]. [博士论文], 西安电子科技大学, 2018.CHEN Jianlai. Study on signal modeling and imaging algorithm for airborne/spaceborne SAR with nonlinear trajectory[D]. [Ph.D. dissertation], Xidian University, 2018.
    [14] ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. A robust motion compensation approach for UAV SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3202–3218. doi: 10.1109/tgrs.2011.2180392
    [15] ZHANG Lei, SHENG Jialian, XING Mengdao, et al. Wavenumber-domain Autofocusing for Highly Squinted UAV SAR Imagery[J]. IEEE Sensors Journal, 2012, 12(5): 1574–1588. doi: 10.1109/jsen.2011.2175216
    [16] XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/tgrs.2013.2276112
    [17] 毛新华, 曹海洋, 朱岱寅, 等. 基于先验知识的SAR两维自聚焦算法[J]. 电子学报, 2013, 41(6): 1041–1047. doi: 10.3969/j.issn.0372-2112.2013.06.001MAO Xinhua, CAO Haiyang, ZHU Daiyin, et al. Prior knowledge aided two dimensional autofocus approach for synthetic aperture radar[J]. Acta Electronica Sinica, 2013, 41(6): 1041–1047. doi: 10.3969/j.issn.0372-2112.2013.06.001
    [18] CHEN Jianlai, SUN Guangcai, XING Mengdao, et al. A two-dimensional beam-steering method to simultaneously consider Doppler centroid and ground observation in GEOSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 161–167. doi: 10.1109/jstars.2016.2544349
    [19] LONG Teng, DONG Xichao, HU Cheng, et al. A new method of zero-Doppler centroid control in GEO SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 512–516. doi: 10.1109/lgrs.2010.2089969
    [20] BAO M, XING M D, and LI Y C. Chirp scaling algorithm for GEO SAR based on fourth-order range equation[J]. Electronics Letters, 2012, 48(1): 41–42. doi: 10.1049/el.2011.1892
    [21] HU Cheng, LIU Zhipeng, and LONG Teng. An improved CS algorithm based on the curved trajectory in geosynchronous SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 795–808. doi: 10.1109/jstars.2012.2188096
    [22] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/tgrs.2013.2285721
    [23] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in range-Doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/lgrs.2016.2599224
    [24] PRATS-IRAOLA P, SCHEIBER R, RODRIGUEZ-CASSOLA M, et al. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003–6016. doi: 10.1109/tgrs.2013.2294353
    [25] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/tgrs.2010.205321
    [26] 黄丽佳, 胡东辉, 丁赤飚, 等. 中高轨道SAR信号建模和成像方法研究[J]. 国外电子测量技术, 2011, 30(6): 21–27, 50. doi: 10.3969/j.issn.1002-8978.2011.06.009HUANG Lijia, HU Donghui, DING Chibiao, et al. Study on signal modeling and imaging approach for medium-earth-orbit SAR[J]. Foreign Electronic Measurement Technology, 2011, 30(6): 21–27, 50. doi: 10.3969/j.issn.1002-8978.2011.06.009
    [27] CHEN Juan, ZENG Dazhi, and LONG Teng. High precision radar echo modelling and simulation method[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008. doi: 10.1109/radar.2008.4653969.
    [28] SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/tgrs.2010.2102040
    [29] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 150–154. doi: 10.1109/lgrs.2012.2195634
    [30] 李震宇, 梁毅, 邢孟道, 等. 弹载合成孔径雷达大斜视子孔径频域相位滤波成像算法[J]. 电子与信息学报, 2015, 37(4): 953–960. doi: 10.11999/JEIT140618LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for highly squint missile-borne synthetic aperture radar with subaperture[J]. Journal of Electronics &Information Technology, 2015, 37(4): 953–960. doi: 10.11999/JEIT140618
    [31] ELDHUSET K. A new fourth-order processing algorithm for spaceborne SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 824–835. doi: 10.1109/7.705890
    [32] BAO M, XING M D, LI Y C, et al. Two-dimensional spectrum for MEO SAR processing using a modified advanced hyperbolic range equation[J]. Electronics Letters, 2011, 47(18): 1043–1045. doi: 10.1049/el.2011.1322
    [33] WANG Pengbo, LIU Wei, CHEN Jie, et al. A high-order imaging algorithm for high-resolution spaceborne SAR based on a modified equivalent squint range model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1225–1235. doi: 10.1109/TGRS.2014.2336241
    [34] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4306–4327. doi: 10.1109/tgrs.2013.2281329
    [35] 刘光炎, 孟喆. 合成孔径雷达Mosaic模式系统性能分析[J]. 微波学报, 2011, 27(3): 88–92.LIU Guangyan and MENG Zhe. Performance analysis of mosaic mode for SAR system[J]. Journal of Microwaves, 2011, 27(3): 88–92.
    [36] SHARAY Y and NAFTALY U. TECSAR: Design considerations and programme status[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 117–121. doi: 10.1049/ip-rsn:20045124
    [37] GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/taes.2009.5089542
    [38] ZHU Daiyin, JIANG Rui, MAO Xinhua, et al. Multi-subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468–488. doi: 10.1109/taes.2013.6404115
    [39] BERIZZI F, MARTORELLA M, CACCIAMANO A, et al. A contrast-based algorithm for synthetic range-profile motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3053–3062. doi: 10.1109/TGRS.2008.2002576
    [40] YE Wei, YEO T S, and BAO Zheng. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2487–2494. doi: 10.1109/36.789644
    [41] XIONG Tao, XING Mengdao, WANG Yong, et al. Minimum-entropy-based autofocus algorithm for SAR data using chebyshev approximation and method of series reversion, and its implementation in a data processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1719–1728. doi: 10.1109/tgrs.2013.2253781
    [42] CHEN Jianlai, LIANG Buge, YANG Degui, et al. Two-step accuracy improvement of motion compensation for airborne SAR with ultrahigh resolution and wide swath[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7148–7160. doi: 10.1109/tgrs.2019.2911952
    [43] MAO Xinhua, HE Xueli, and LI Danqi. Knowledge-AIDED 2-D autofocus for spotlight SAR range migration algorithm imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5458–5470. doi: 10.1109/tgrs.2018.2817507
    [44] PRATS P, DE MACEDO K A C, REIGBER A, et al. Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 349–353. doi: 10.1109/lgrs.2007.895712
    [45] ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/jstars.2016.2577588
    [46] DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920
    [47] TAN Weixian, LI Daojing, and HONG Wen. Airborne spotlight SAR imaging with super high resolution based on back-projection and autofocus algorithm[C]. The 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008. doi: 10.1109/igarss.2008.4779969.
    [48] PONCE O, PRATS P, SCHEIBER R, et al. Multibaseline 3-D circular SAR imaging AT L-band[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012.
    [49] WEI Shunjun, ZHANG Xiaoling, HU Kebing, et al. LASAR autofocus imaging using maximum sharpness back projection via semidefinite programming[C].2015 IEEE Radar Conference, Arlington, USA, 2015. doi: 10.1109/radar.2015.7131198.
    [50] ZHANG Lei, LI Haolin, QIAO Zhijun, et al. Integrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1394–1398. doi: 10.1109/lgrs.2013.2258886
    [51] 李浩林, 陈露露, 张磊, 等. 一种适用于快速分解后向投影聚束SAR成像的自聚焦方法[J]. 航空学报, 2014, 35(7): 2011–2018. doi: 10.7527/s1000-6893.2013.0040LI Haolin, CHEN Lulu, ZHANG Lei, et al. An autofocus method for spotlight SAR imagery created by fast factorized back-projection[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 2011–2018. doi: 10.7527/s1000-6893.2013.0040
    [52] 李浩林, 陈露露, 张磊, 等. 快速分解后向投影SAR成像的自聚焦算法研究[J]. 电子与信息学报, 2014, 36(4): 938–945. doi: 10.3724/sp.j.1146.2013.00011LI Haolin, CHEN Lulu, ZHANG Lei, et al. Study of autofocus method for SAR imagery created by fast factorized backprojection[J]. Journal of Electronics &Information Technology, 2014, 36(4): 938–945. doi: 10.3724/sp.j.1146.2013.00011
    [53] YANG Zemin, XING Mengdao, ZHANG Lei, et al. A coordinate-transform based FFBP algorithm for high-resolution spotlight SAR imaging[J]. Science China Information Sciences, 2015, 58(2): 020303. doi: 10.1007/s11432-014-5262-x
    [54] CHEN Jianlai, XING Mengdao, SUN Guangcai, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390–6401. doi: 10.1109/tgrs.2017.2727060
    [55] 邵鹏, 邢孟道, 李学仕, 等. 一种新的频域带宽合成的斜视高分辨SAR成像方法[J]. 西安电子科技大学学报: 自然科学版, 2015, 42(2): 28–34. doi: 10.3969/j.issn.1001-2400.2015.02.005SHAO Peng, XING Mengdao, LI Xueshi, et al. Squinted high resolution SAR based on the frequency synthetic bandwidth[J]. Journal of Xidian University, 2015, 42(2): 28–34. doi: 10.3969/j.issn.1001-2400.2015.02.005
    [56] HU Jianmin, WANG Yanfei, and LI Heping. Channel phase error estimation and compensation for ultrahigh-resolution airborne SAR system based on echo data[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1069–1073. doi: 10.1109/lgrs.2012.2190133
    [57] 景国彬, 孙光才, 邢孟道, 等. 一种新的步进频MIMO-SAR带宽合成的两步处理方法[J]. 西安电子科技大学学报:自然科学版, 2018, 45(2): 148–153, 159. doi: 10.3969/j.issn.1001-2400.2018.02.025JING Guobin, SUN Guangcai, XING Mengdao, et al. Novel two-step method of bandwidth synthesis for SF-MIMO-SAR[J]. Journal of Xidian University, 2018, 45(2): 148–153, 159. doi: 10.3969/j.issn.1001-2400.2018.02.025
    [58] 景国彬, 李宁, 孙光才, 等. 联合误差估计的机载超高分辨率SAR成像[J]. 西安电子科技大学学报, 2019, 46(3): 1–7. doi: 10.19665/j.issn1001-2400.2019.03.001JING Guobin, LI Ning, SUN Guangcai, et al. Very high resolution SAR imaging method combined with motion estimation[J]. Journal of Xidian University, 2019, 46(3): 1–7. doi: 10.19665/j.issn1001-2400.2019.03.001
    [59] DAVIDSON G W, CUMMING I G, and ITO M R. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121–133. doi: 10.1109/7.481254
    [60] MOREIRA A and HUANG Yonghong. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029–1040. doi: 10.1109/36.312891
    [61] GAZDAG J and SGUAZZERO P. Migration of seismic data[J]. Proceedings of the IEEE, 1984, 72(10): 1302–1315. doi: 10.1109/proc.1984.13019
    [62] SUN Guangcai, XING Mengdao, LIU Yan, et al. Extended NCS based on method of series reversion for imaging of highly squinted SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 446–450. doi: 10.1109/lgrs.2010.2084562
    [63] NEO Y L, WONG F, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/lgrs.2006.885862
    [64] XIONG Tao, XING Mengdao, XIA Xianggen, et al. New applications of omega-K algorithm for SAR data processing using effective wavelength at high squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3156–3169. doi: 10.1109/tgrs.2012.2213342
    [65] 雷万明, 刘光炎, 黄顺吉. 基于RD算法的星载SAR斜视成像[J]. 信号处理, 2002, 18(2): 172–176, 140. doi: 10.3969/j.issn.1003-0530.2002.02.020LEI Wanming, LIU Guangyan, and HUANG Shunji. The squint imaging of spaceborne SAR in RD algorithm[J]. Signal Processing, 2002, 18(2): 172–176, 140. doi: 10.3969/j.issn.1003-0530.2002.02.020
    [66] AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595–3609. doi: 10.1109/tgrs.2012.2183606
    [67] WU Yufeng, SUN Guangcai, XIA Xianggen, et al. An azimuth Frequency Non-linear Chirp Scaling (FNCS) algorithm for TOPS SAR imaging with high squint angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 213–221. doi: 10.1109/jstars.2013.2258893
    [68] ZENG Letian, LIANG Yi, XING Mengdao, et al. A novel motion compensation approach for airborne spotlight SAR of high-resolution and high-squint mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 429–433. doi: 10.1109/lgrs.2016.2517099
    [69] XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/tgrs.2013.2281454
    [70] 周鹏, 李亚超, 邢孟道. 弹载扫描SAR宽测绘带模式成像方法研究[J]. 西安电子科技大学学报: 自然科学版, 2011, 38(1): 96–103. doi: 10.3969/j.issn.1001-2400.2011.01.016ZHOU Peng, LI Yachao, and XING Mengdao. Study of the imaging method of the missile-borne scan SAR wide-swath mode[J]. Journal of Xidian University, 2011, 38(1): 96–103. doi: 10.3969/j.issn.1001-2400.2011.01.016
    [71] YEO T S, TAN N L, ZHANG Chengbo, et al. A new subaperture approach to high squint SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 954–968. doi: 10.1109/36.921413
    [72] LIU Yan, XING Mengdao, SUN Cuangcai, et al. Echo model analyses and imaging algorithm for high-resolution SAR on high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 933–950. doi: 10.1109/tgrs.2011.2162243
    [73] LIANG Yi, LI Zhenyu, ZENG Letian, et al. A high-order phase correction approach for focusing HS-SAR small-aperture data of high-speed moving platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4451–4561. doi: 10.1109/jstars.2015.2459765
    [74] LI Zhenyu, LIANG Yi, XING Mengdao, et al. Focusing of highly squinted SAR data with frequency nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 23–27. doi: 10.1109/lgrs.2015.2492681
    [75] LIANG Yi, HUAI Yuanyuan, DING Jinshan, et al. A modified ω-k algorithm for HS-SAR small-aperture data imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3710–3721. doi: 10.1109/tgrs.2016.2525787
    [76] 李震宇, 陈溅来, 梁毅, 等. 带有多普勒中心空变校正的大斜视SAR成像方法[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(3): 19–24. doi: 10.3969/j.issn.1001-2400.2016.03.004LI Zhenyu, CHEN Jianlai, LIANG Yi, et al. Imaging method for highly squinted SAR with spatially-variant doppler centroid correction[J]. Journal of Xidian University, 2016, 43(3): 19–24. doi: 10.3969/j.issn.1001-2400.2016.03.004
    [77] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. An omega-K algorithm for highly squinted missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1569–1573. doi: 10.1109/lgrs.2014.2301718
    [78] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. Acceleration model analyses and imaging algorithm for highly squinted airborne spotlight-Mode SAR with maneuvers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1120–1131. doi: 10.1109/jstars.2015.2399103
    [79] ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/tgrs.2015.2447393
    [80] LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/tgrs.2016.2535391
    [81] BIE Bowen, XING Mengdao, XIA Xianggen, et al. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/tgrs.2018.2848249
    [82] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. Processing of monostatic SAR data with general configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6529–6546. doi: 10.1109/tgrs.2015.2443835
    [83] BIE Bowen, SUN Guangcai, XIA Xianggen, et al. High-speed maneuvering platforms squint beam-steering SAR imaging without subaperture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6974–6985. doi: 10.1109/tgrs.2019.2909729
    [84] ALBUQUERQUE M, PRATS P, and SCHEIBER R. Applications of time-domain back-projection SAR processing in the airborne case[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008. doi: 10.13140/rg.2.1.1928.8487.
    [85] YEGULALP A F. Fast backprojection algorithm for synthetic aperture radar[C]. The 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999. doi: 10.1109/nrc.1999.767270.
    [86] ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/taes.2003.1238734
    [87] 董祺, 杨泽民, 孙光才, 等. 子场景处理的弹载前斜视SAR时域成像算法[J]. 系统工程与电子技术, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506x.2017.05.10DONG Qi, YANG Zemin, SUN Guangcai, et al. Missile-borne forward squint SAR time-domain imaging algorithm based on sub-region processing[J]. Systems Engineering and Electronics, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506x.2017.05.10
    [88] 景国彬, 盛佳恋, 陈溅来, 等. 一种强杂波背景下SAR目标超分辨成像方法[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(5): 12–17, 87. doi: 10.3969/j.issn.1001-2400.2016.05.003JING Guobin, SHENG Jialian, CHEN Jianlai, et al. Super-resolution imaging method for the SAR target in a strong clutter scene[J]. Journal of Xidian University, 2016, 43(5): 12–17, 87. doi: 10.3969/j.issn.1001-2400.2016.05.003
    [89] 盛佳恋, 张磊, 邢孟道, 等. 一种利用稀疏统计特性的超分辨ISAR成像方法[J]. 西安电子科技大学学报: 自然科学版, 2012, 39(6): 55–60.SHENG Jialian, ZHANG Lei, XING Mengdao, et al. Super-resolution ISAR imaging method with sparse statistics[J]. Journal of Xidian University, 2012, 39(6): 55–60.
    [90] 许然. 提高雷达成像质量的若干新体制和新方法研究[D]. [博士论文], 西安电子科技大学, 2015.XU Ran. Study on new systems and techniques for improving radar imaging performances[D]. [Ph.D. dissertation], Xidian University, 2015.
    [91] 董臻, 朱国富, 梁甸农. 基于外推的SAR图像分辨率增强算法[J]. 电子学报, 2002, 30(3): 359–362. doi: 10.3321/j.issn:0372-2112.2002.03.015DONG Zhen, ZHU Guofu, and LIANG Diannong. Enhancing the resolution of SAR image by extrapolation[J]. Acta Electronica Sinica, 2002, 30(3): 359–362. doi: 10.3321/j.issn:0372-2112.2002.03.015
    [92] 田鹤, 李道京. 稀疏重航过阵列SAR运动误差补偿和三维成像方法[J]. 雷达学报, 2018, 7(6): 717–729. doi: 10.12000/JR18101TIAN He and LI Daojing. Motion compensation and 3-D imaging algorithm in sparse flight based airborne array SAR[J]. Journal of Radars, 2018, 7(6): 717–729. doi: 10.12000/JR18101
    [93] 闫敏, 韦顺军, 田博坤, 等. 基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法[J]. 雷达学报, 2018, 7(6): 705–716. doi: 10.12000/JR18067YAN Min, WEI Shunjun, TIAN Bokun, et al. LASAR high-resolution 3D imaging algorithm based on sparse Bayesian regularization[J]. Journal of Radars, 2018, 7(6): 705–716. doi: 10.12000/JR18067
    [94] WEIB M, PETERS O, and ENDER J. A three dimensional SAR system on an UAV[C]. The 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 5315–5318. doi: 10.1109/igarss.2007.4424062.
    [95] MENG Ziqiang, LI Yachao, XING Mengdao, et al. Property analysis of bistatic forward-looking SAR with arbitrary geometry[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 111–127.
    [96] 孟自强, 李亚超, 汪宗福, 等. 弹载双基前视SAR俯冲段弹道设计方法[J]. 系统工程与电子技术, 2015, 37(4): 768–774. doi: 10.3969/j.issn.1001-506x.2015.04.08MENG Ziqiang, LI Yachao, WANG Zongfu, et al. Design method of MBFL-SAR trajectory during terminal diving period[J]. Systems Engineering and Electronics, 2015, 37(4): 768–774. doi: 10.3969/j.issn.1001-506x.2015.04.08
    [97] MENG Ziqiang, LI Yachao, LI Chunbiao, et al. A raw data simulator for Bistatic forward-looking high-speed maneuvering-platform SAR[J]. Signal Processing, 2015, 117: 151–164. doi: 10.1016/j.sigpro.2015.05.008
    [98] 孟自强, 李亚强, 邢孟道, 等. 基于斜距等效的弹载双基前视SAR相位空变校正方法[J]. 电子与信息学报, 2016, 38(3): 613–621. doi: 10.11999/JEIT150782MENG Ziqiang, LI Yaqiang, XING Mengdao, et al. Phase space-variance correction method for missile-borne bistatic forward-looking SAR based on equivalent range equation[J]. Journal of Electronics &Information Technology, 2016, 38(3): 613–621. doi: 10.11999/JEIT150782
    [99] 孟自强, 李亚超, 邢孟道, 等. 弹载双基前视SAR扩展场景成像算法设计[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(3): 31–37. doi: 10.3969/j.issn.1001-2400.2016.03.006MENG Ziqiang, LI Yachao, XING Mengdao, et al. Imaging method for the extended scene of missile-borne bistatic forward-looking SAR[J]. Journal of Xidian University, 2016, 43(3): 31–37. doi: 10.3969/j.issn.1001-2400.2016.03.006
    [100] MOORE R K, CLAASSEN J P, and LIN Y H. Scanning spaceborne synthetic aperture radar with integrated radiometer[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(3): 410–421. doi: 10.1109/taes.1981.309069
    [101] KRIEGER G, GEBERT N, YOUNIS M, et al. Advanced concepts for ultra-wide-swath SAR imaging[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008.
    [102] 范怀涛, 张志敏, 李宁. 基于特征分解的方位向多通道SAR相位失配校正方法[J]. 雷达学报, 2018, 7(3): 346–354. doi: 10.12000/JR17012FAN Huaitao, ZHANG Zhimin, and LI Ning. Channel phase mismatch calibration for multichannel in azimuth SAR imaging based on eigen-structure method[J]. Journal of Radars, 2018, 7(3): 346–354. doi: 10.12000/JR17012
    [103] LI Zhenfang, BAO Zheng, WANG Hongyang, et al. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436–452. doi: 10.1109/taes.2006.1642562
    [104] ZHANG L, XING M D, QIU C W, et al. Adaptive two-step calibration for high resolution and wide-swath SAR imaging[J]. IET Radar, Sonar & Navigation, 2010, 4(4): 548–559. doi: 10.1049/iet-rsn.2008.0158
    [105] JIN Feng, GAO Canguan, ZHANG Yi, et al. Phase mismatch calibration of the multichannel SAR based on azimuth cross correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 903–907. doi: 10.1109/lgrs.2012.2227107
    [106] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5294–5305. doi: 10.1109/tip.2013.2274387
    [107] 左绍山, 孙光才, 邢孟道. 一种改进的方位多通道SAR误差校正方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(3): 13–18. doi: 10.3969/j.issn.1001-2400.2017.03.003ZUO Shaoshan, SUN Guangcai, and XING Mengdao. Improved channel error calibration method for the azimuth multichannel SAR[J]. Journal of Xidian University, 2017, 44(3): 13–18. doi: 10.3969/j.issn.1001-2400.2017.03.003
    [108] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/lgrs.2004.832700
    [109] LI Zhenfang, WANG Hongyan, TAO Su, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82–86. doi: 10.1109/lgrs.2004.840610
    [110] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. A robust imaging algorithm for squint mode multi-channel high-resolution and wide-swath SAR with hybrid baseline and fluctuant terrain[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1583–1598. doi: 10.1109/jstsp.2015.2464182
    [111] ZUO Shaoshan, XING Mengdao, XIA Xianggen, et al. Improved signal reconstruction algorithm for multichannel SAR based on the doppler spectrum estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1425–1442. doi: 10.1109/jstars.2016.2618518
    [112] KIRSCHT M. Detection and imaging of arbitrarily moving targets with single-channel SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2003, 150(1): 7–11. doi: 10.1049/ip-rsn:20030076
    [113] MARQUES P and DIAS J M B. Velocity estimation of fast moving targets using undersampled SAR raw-data[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium Scanning the Present and Resolving the Future, Sydney, Australia, 2001: 1610–1613.
    [114] ZHOU F, WU R, XING M, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 59–66.
    [115] BARBAROSSA S. Detection and imaging of moving objects with synthetic aperture radar. 1. Optimal detection and parameter estimation theory[J]. IEE Proceedings F - Radar and Signal Processing, 1992, 139(1): 79–88. doi: 10.1049/ip-f-2.1992.0010
    [116] LEGG J, BOLTON A, and GRAY D. SAR moving target detection using non-uniform PRI[C]. The 1st European Conference on Synthetic Aperture Radar, Konigswinter, Germany, 1996: 423–426.
    [117] DIAS J M B and MARQUES P A C. Multiple moving target detection and trajectory estimation using a single SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 604–624. doi: 10.1109/TAES.2003.1207269
    [118] MARQUES P A C and DIAS J M B. Velocity estimation of fast moving targets using a single SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 75–89. doi: 10.1109/TAES.2005.1413748
    [119] WU Qisong, XING Mengdao, QIU Chengwei, et al. Motion parameter estimation in the SAR system with low PRF sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 450–454. doi: 10.1109/LGRS.2009.2039113
    [120] JAO J K. Theory of synthetic aperture radar imaging of a moving target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1984–1992. doi: 10.1109/36.951089
    [121] ZHU Daiyin, LI Yong, and ZHU Zhaoda. A keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147
    [122] PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691
    [123] WANG Libao, XU Jia, PENG Shibao, et al. Ground moving target indication for MIMO-SAR[C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009.
    [124] 赵团, 邓云凯, 王宇, 等. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548–557. doi: 10.12000/JR16014ZHAO Tuan, DENG Yunkai, WANG Yu, et al. Processing sliding Mosaic mode data with modified full-aperture imaging algorithm integrating scalloping correction[J]. Journal of Radars, 2016, 5(5): 548–557. doi: 10.12000/JR16014
    [125] 陈世阳, 黄丽佳, 俞雷. 基于改进sinc插值的变PRF采样聚束SAR成像[J]. 雷达学报, 2019, 8(4): 527–536. doi: 10.12000/JR18095CHEN Shiyang, HUANG Lijia, and YU Lei. A novel sinc interpolation for continuous PRF sampled sequences reconstruction in spotlight SAR[J]. Journal of Radars, 2019, 8(4): 527–536. doi: 10.12000/JR18095
    [126] MITTERMAYER J, MOREIRA A, and LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198–2214. doi: 10.1109/36.789617
    [127] LANARI R, TESAURO M, SANSOSTI E, et al. Spotlight SAR data focusing based on a Two-step processing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1993–2004. doi: 10.1109/36.951090
    [128] NIE Xin, SHEN Shijian, YU Hui, et al. A wide-field SAR polar format algorithm based on quadtree sub-image segmentation[C]. The 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 9355–9358. doi: 10.1109/igarss.2018.8651415.
    [129] CARRARA W G, GOODMAN R S, and RICOY M A. New algorithms for widefield SAR image formation[C]. The 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 8–43. doi: 10.1109/nrc.2004.1316392.
    [130] MITTERMAYER J, LORD R, and BORNER E. Sliding spotlight SAR processing for Terra SAR-X using a new formulation of the extended chirp scaling algorithm[C]. The 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1462–1464. doi: 10.1109/igarss.2003.1294144
    [131] LANARI R, ZOFFOLI S, SANSOSTI E, et al. New approach for hybrid strip-map/spotlight SAR data focusing[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(6): 363–372. doi: 10.1049/ip-rsn:20010662
    [132] PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770–780. doi: 10.1109/tgrs.2009.2027701
    [133] ENGEN G and LARSEN Y. Efficient full aperture processing of TOPS mode data using the moving band CHIRP Z-transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3688–3693. doi: 10.1109/tgrs.2011.2145384
    [134] XU Wei, HUANG Pingping, DENG Yunkai, et al. An efficient approach with scaling factors for TOPS-mode SAR data focusing[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5): 929–933. doi: 10.1109/lgrs.2011.2135837
    [135] LANARI R, HENSLEY S, and ROSEN P. Modified SPECAN algorithm for ScanSAR data processing[C]. The 1998 IEEE International Geoscience and Remote Sensing, Seattle, USA, 1998: 636–638. doi: 10.1109/igarss.1998.699535.
    [136] EINEDER M, SCHATTLER B, BREIT H, et al. TerraSAR-X SAR products and processing algorithms[C]. The 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, South Korea, 2005: 4870–4873. doi: 10.1109/igarss.2005.1526765.
    [137] SUN Jinping, HU Yuxing, HONG Wen, et al. A unified imaging algorithm for multimode spaceborne SAR[C]. The 9th International Conference on Signal Processing, Beijing, China, 2008: 2314–2317. doi: 10.1109/icosp.2008.4697612.
    [138] SUN Guangcai, XING Mengdao, WANG Yong, et al. Sliding spotlight and TOPS SAR data processing without subaperture[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1036–1040. doi: 10.1109/lgrs.2011.2151174
    [139] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4366–4377. doi: 10.1109/tgrs.2012.2237407
    [140] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. A unified focusing algorithm for several modes of SAR based on FRFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3139–3155. doi: 10.1109/tgrs.2012.2212280
    [141] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Multichannel full-aperture azimuth processing for beam steering SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4761–4778. doi: 10.1109/tgrs.2012.2230267
    [142] HE Feng, CHEN Qi, DONG Zhen, et al. Processing of ultrahigh-resolution spaceborne sliding spotlight SAR data on curved orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 819–839. doi: 10.1109/taes.2013.6494383
    [143] 刘燕, 孙光才, 邢孟道. 大场景高分辨率星载聚束SAR修正-k算法[J]. 电子与信息学报, 2011, 33(9): 1225–1235. doi: 10.3724/SP.J.1146.2011.00150LIU Yan, SUN Guangcai, XING Mengdao. A modified ω-k algorithm for wide-field and high-resolution spaceborne Spotlight SAR[J]. Journal of Electronic &Information Technology, 2011, 33(9): 1225–1235. doi: 10.3724/SP.J.1146.2011.00150
    [144] WU Yuan, SUN Guangcai, YANG Chun, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. doi: 10.1109/tgrs.2015.2481923
    [145] SUN Guangcai, WU Yuan, YANG Jun, et al. Full-aperture focusing of very high resolution spaceborne-squinted sliding spotlight SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3309–3321. doi: 10.1109/tgrs.2017.2669205
    [146] HU Cheng, LONG Teng, ZENG Tao, et al. The accurate focusing and resolution analysis method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3548–3563. doi: 10.1109/tgrs.2011.2160402
    [147] HU Cheng, LONG Teng, LIU Zhipeng, et al. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5514–5528. doi: 10.1109/tgrs.2013.2290133
    [148] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Medium-earth-orbit SAR focusing using range doppler algorithm with integrated two-step azimuth perturbation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 626–630. doi: 10.1109/lgrs.2014.2353674
    [149] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. An analytical resolution evaluation approach for bistatic GEOSAR based on local feature of ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2159–2169. doi: 10.1109/tgrs.2017.2776151
    [150] CHEN Jianlai, SUN Guangcai, XING Mengdao, et al. Focusing improvement of curved trajectory spaceborne SAR based on optimal LRWC preprocessing and 2-D singular value decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4246–4258. doi: 10.1109/tgrs.2018.2890294
    [151] XU Jia, XIA Xianggen, PENG Shibao, et al. Radar maneuvering target motion estimation based on generalized radon-fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/tsp.2012.2217137
    [152] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4013–4026. doi: 10.1109/tsp.2016.2558161
    [153] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. An approach for refocusing of ground moving target without target motion parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 336–350. doi: 10.1109/tgrs.2016.2606437
    [154] 邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005XING Mengdao, GAO Yuexin, CHEN Jianlai, et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science &Technology Review, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005
    [155] 杨利超, 高悦欣, 邢孟道, 等. 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法[J]. 雷达学报, 2019, 8(2): 215–223. doi: 10.12000/JR18120YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120
    [156] 陈潇翔, 邢孟道. 基于空变运动误差分析的微波光子超高分辨SAR成像方法[J]. 雷达学报, 2019, 8(2): 205–214. doi: 10.12000/JR18121CHEN Xiaoxiang and XING Mengdao. An ultra-high-resolution microwave photonic-based SAR image method based on space-variant motion error analysis[J]. Journal of Radars, 2019, 8(2): 205–214. doi: 10.12000/JR18121
  • [1] 卫扬铠曾涛陈新亮丁泽刚范宇杰温育涵 . 典型线面目标合成孔径雷达参数化成像. 雷达学报, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [2] 金添 . 叶簇穿透合成孔径雷达增强成像方法. 雷达学报, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [3] 任笑真杨汝良 . 一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法. 雷达学报, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [4] 黄岩赵博陶明亮陈展野洪伟 . 合成孔径雷达抗干扰技术综述. 雷达学报, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [5] 赵团邓云凯王宇李宁王翔宇 . 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法. 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
    [6] 李强范怀涛 . 基于辅助数字高程模型的方位多通道SAR相位失配校正方法. 雷达学报, 2019, 8(5): 616-623. doi: 10.12000/JR19009
    [7] 王岩飞李和平韩松 . 雷达脉冲编码理论方法及应用. 雷达学报, 2019, 8(1): 1-16. doi: 10.12000/JR19023
    [8] 吴一戎 . 多维度合成孔径雷达成像概念. 雷达学报, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
    [9] 林世斌李悦丽严少石周智敏 . 平地假设对合成孔径雷达时域算法成像质量的影响研究. 雷达学报, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
    [10] 张文彬邓云凯王宇 . 星地双基合成孔径雷达聚束模式快速BP算法. 雷达学报, 2013, 2(3): 357-366. doi: 10.3724/SP.J.1300.2013.13031
    [11] 曾操梁思嘉王威徐青 . 基于频率步进信号的旋转式合成孔径雷达成像方法. 雷达学报, 2014, 3(4): 401-408. doi: 10.3724/SP.J.1300.2014.14043
    [12] 路满宋红军罗运华 . 基于调频连续波信号的圆弧式合成孔径雷达成像方法. 雷达学报, 2016, 5(4): 425-433. doi: 10.12000/JR16007
    [13] 张珂殊潘洁王然李光祚王宁吴一戎 . 大幅宽激光合成孔径雷达成像技术研究. 雷达学报, 2017, 6(1): 1-10. doi: 10.12000/JR16152
    [14] 何峰杨阳董臻梁甸农 . 曲线合成孔径雷达三维成像研究进展与展望. 雷达学报, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [15] 朱岱寅张营俞翔毛新华张劲东李勇 . 微型合成孔径雷达成像信号处理技术. 雷达学报, 2019, 8(6): 793-803. doi: 10.12000/JR19094
    [16] 丁赤飚仇晓兰徐丰梁兴东焦泽坤张福博 . 合成孔径雷达三维成像——从层析、阵列到微波视觉. 雷达学报, 2019, 8(6): 693-709. doi: 10.12000/JR19090
    [17] 罗迎倪嘉成张群 . 基于“数据驱动+智能学习”的合成孔径雷达学习成像. 雷达学报, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [18] 李春升杨威王鹏波 . 星载SAR 成像处理算法综述. 雷达学报, 2013, 2(1): 111-122. doi: 10.3724/SP.J.1300.2013.20071
    [19] 韦维朱岱寅吴迪 . 基于尺度变换原理的SAR波数域成像算法. 雷达学报, 2020, 9(): 1-9. doi: 10.12000/JR19112
    [20] 张新征谭志颖王亦坚 . 基于多特征-多表示融合的SAR图像目标识别. 雷达学报, 2017, 6(5): 492-502. doi: 10.12000/JR17078
  • 加载中
图(18)
计量
  • 文章访问数:  1240
  • HTML浏览量:  788
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 录用日期:  2019-12-24
  • 刊出日期:  2019-12-28

多平台合成孔径雷达成像算法综述

    通讯作者: 陈溅来 jianlaichen@163.com; 邢孟道 xmd@xidian.edu.cn
    作者简介: 邢孟道(1975–),男,浙江嵊州人,博士生导师、教授,现任西安电子科技大学前沿交叉研究院副院长。2002年获西安电子科技大学工学博士学位并留校工作,2004年破格评为教授。2018年成为中国电子学会会士。曾获国家杰出青年科学基金、国防科技卓越青年人才基金、中青年科技创新领军人才。曾获陕西省科学技术奖一等奖、陕西省创新团队。主要研究雷达成像,侧重于精细成像、灵活成像和大斜视成像等。先后主持国家973、863计划以及预研等多个项目。近五年在TGRS和JSTAR等国际遥感期刊发表论文113篇,SCI他引1617次,H因子42。培养和协助培养“百优”和“省优”博士论文6篇。任IEEE TGRS副主编、IEEE Fellow等。近五年连续入选Elsevier电子和电气工程领域“中国高被引学者榜单”。E-mail: xmd@xidian.edu.cn;林 浩(1996–),男,浙江嵊州人,西安电子科技大学博士研究生,主要研究机载多模式SAR运动补偿技术与成像等。E-mail: LH_Future1996@163.com;陈溅来(1990–),男,湖南衡阳人,副教授,硕士生导师,现工作于中南大学航空航天学院。2013~2018年在西安电子科技大学雷达信号处理国家重点实验室攻读博士学位,并于2018年获工学博士学位。2018年评为副教授、硕士生导师,2019年获中国电子教育学会优秀博士学位论文提名奖。主要研究机/星载SAR非线性轨迹信号建模与成像。先后主持国家自然科学基金和航天基金等多个项目。近五年在TGRS、JSTAR和GRSL等国际遥感期刊发表论文10余篇。E-mail: jianlaichen@163.com;孙光才(1984–),男,湖北孝感汉川人,博士生导师,副教授,IEEE会员。自2007年以来,一直专注于雷达成像技术的研究,目前为西安电子科技大学“雷达信号处理国家重点实验室”学术骨干。主要从事新体制雷达、雷达成像、动目标成像等研究,已在IEEE Trans. on GRS等国际权威刊物发表学术论文多篇。研究成果曾入围了APSAR2013 Young Scientist Award Competition。曾获得2015年陕西省优秀博士学位论文奖和2015年西安电子科技大学优秀博士学位论文奖。E-mail: gcsun@xidian.edu.cn;严棒棒(1995–),男,江苏宿迁人,西安电子科技大学硕士研究生,主要研究机载滑动聚束SAR成像及GPU实现等。E-mail: Yan_Chrysanthemum@outlook.com
  • 1. 西安电子科技大学雷达信号处理国家重点实验室 西安 710071
  • 2. 中南大学航空航天学院 长沙 410083
基金项目:  国家自然科学基金(61901531)

摘要: 多平台合成孔径雷达(SAR)是合成孔径雷达极具发展潜力的研究方向之一,该文集中讨论了多平台SAR的成像算法,包括机载SAR、弹载SAR和星载SAR平台。该文首先简要阐述了SAR回波模型的建立,包括“斜距模型和成像模式”,然后综述了近年来机载SAR、弹载SAR和星载SAR成像算法的研究进展,并详细阐述了各平台固有的特性以及面临的挑战,最后对未来多平台SAR成像算法研究的发展趋势进行了展望。

English Abstract

    • 随着合成孔径雷达(Synthetic Aperture Radar, SAR)技术[1,2]的快速发展,SAR搭载平台不再仅仅局限于单一的机载平台[3],逐渐出现了星载SAR[4-6]和弹载SAR[7,8]等不同应用平台,满足了更多的需求。

      机载SAR平台凭借强灵活性、高重访频率等优势应用于多个领域,然而机载SAR运行高度较低,受大气湍流以及其它气象因素的影响较大,航线会偏离理想直线轨迹飞行造成运动误差,破坏SAR回波信号的相干性,导致SAR成像出现散焦。因此,基于飞机姿态等测量数据的运动补偿技术以及基于雷达回波数据的自聚焦技术是其研究的核心问题[9-11],运动补偿算法和自聚焦算法的精度决定着其最后成像质量。相比于机载SAR,以星载为平台的SAR系统运行轨道高且运动平台平稳,运动误差可忽略。需要指出的是,受地球曲率影响[12],长时间观测和高轨道的运行造成运行轨迹具有明显的非线性特性,使得传统的斜距模型以及频域算法精度降低甚至失效,给星载SAR成像带来了难度。因此,非线性轨迹的斜距建模与频域/时域成像算法是其研究的核心问题,斜距模型的精度以及算法的先进性是影响成像质量的首要因素。与前两者比较,以导弹为载体的弹载SAR系统具有大机动、提前观测、实时成像等优势。由于其轨道的大机动和大斜视等情况,现有的大部分SAR成像算法难以满足高精度和高实时性的需求,所以针对该