微波光子集成芯片技术

钱广 钱坤 顾晓文 孔月婵 陈堂胜

引用本文:
Citation:

微波光子集成芯片技术

    作者简介: 钱 广(1985–),男,博士。现在南京电子器件研究所微波毫米波单片集成和模块电路重点实验室从事微波光子、激光雷达等方面的光电集成芯片、器件和组件研究。E-mail: chinaqgll@163.com;顾晓文(1989–),男,硕士。现在南京电子器件研究所微波毫米波单片集成和模块电路重点实验室从事微波光子集成器件等方面研究;孔月婵(1982–),女,博士。现为南京电子器件研究所微波毫米波单片集成和模块电路重点实验室研究员级高工。主要研究方向为半导体器件物理及异质异构集成技术等;陈堂胜(1964–),男,首席科学家。主要研究方向为半导体器件物理、工艺及异质集成技术等.
    通讯作者: 钱广, chinaqgll@163.com
  • 基金项目:

    国家部委基金

  • 中图分类号: TN256

Integrated Chip Technologies for Microwave Photonics

    Corresponding author: QIAN Guang, chinaqgll@163.com ;
  • Fund Project: The National Ministries Foundation

    CLC number: TN256

  • 摘要: 微波光子集成芯片技术是微波光子雷达的重要支撑技术,不仅可以实现器件的多功能化,缩小微波光子雷达的体积,还可以大大提升微波光子雷达的稳定性与可靠性。该文介绍了目前常用的InP基、Si基和铌酸锂基等材料体系及其异质异构集成的光子集成芯片技术和可用于微波光子混合集成的光电集成芯片技术,并展望了未来发展趋势。
  • 图 1  InP基大规模光子集成芯片[11]

    Figure 1.  InP-based large-scale photonic integrated chip[11]

    图 2  典型InP基集成光子器件芯片[712]

    Figure 2.  Typical InP-based photonic integrated chips[712]

    图 3  典型InP基光子器件光波导结构示意图[11]

    Figure 3.  The optical waveguide structure of typical InP-based photonic devices[11]

    图 4  基于多次外延技术的InP基光子器件单片集成工艺[11]

    Figure 4.  Monolithic integration of InP-based photonic devices based on the multi-epitaxial growth[11]

    图 5  典型InP基光子器件模斑转换器[1316]

    Figure 5.  Typical spot-size converter of InP-based photonic devices[1316]

    图 6  Si基光子器件

    Figure 6.  Si-based photonic devices

    图 7  Si基集成OEO芯片[41]

    Figure 7.  Si-based integrated OEO chip[41]

    图 8  Si基光子器件

    Figure 8.  Si-based photonic devices

    图 9  SiN光子器件

    Figure 9.  SiN photonic devices

    图 10  LiNbO3基集成光子芯片

    Figure 10.  LiNbO3-based integrated photonic chip

    图 11  新型集成光子器件

    Figure 11.  New integrated photonic devices

    图 12  InP-Si光子集成器件

    Figure 12.  InP-Si integrated photonic devices

    图 13  传统LiNbO3 (LN)光波导和常用LiNbO3-Si混合集成光波导结构示意图[94]

    Figure 13.  Structural diagrams of traditional LiNbO3 optical waveguide and common LiNbO3-Si hybrid integrated optical waveguides[94]

    图 14  基于Si基LiNbO3薄膜的电光调制器[97]

    Figure 14.  Electro-optic modulator based on Si-based LiNbO3 film[97]

    图 15  Si-LiNbO3混合集成电光调制器[98]

    Figure 15.  Si-LiNbO3 hybrid integrated electro-optic modulator[98]

    图 16  基于PWB技术的光子异质异构集成[104]

    Figure 16.  Photonic heterogeneous integration based on PWB technology[104]

    图 17  基于引线互连的光电混合集成接收器芯片及模块[130]

    Figure 17.  Hybrid optoelectronic integrated receiver chip and module based on wire bonding[130]

    图 18  InP基周期分段型IQ电光调制器与驱动电路芯片的引线互连[132]

    Figure 18.  Hybrid optoelectronic integrated between the InP-based IQ modulator and the driver circuit based on wire bonding[132]

    图 19  Si基光电单片集成[133]

    Figure 19.  Si-based optoelectronic monolithic integration[133]

    图 20  InP基光电单片集成[134]

    Figure 20.  InP-based optoelectronic monolithic integration[134]

    图 21  InP-Si光电异质集成[135]

    Figure 21.  InP-Si hybrid optoelectronic integration[135]

    图 22  多功能集成微波光子收发前端芯片概念框架[6]

    Figure 22.  Conceptual structure of multifunctional integrated microwave photonic transceiver chip[6]

    表 1  报道的一些集成光子器件及性能

    Table 1.  Some reported integrated photonic devices and their performances

    材料 时间 第一作者国籍 器件 指标
    InP 1999 The Netherlands 波束形成[105] 通道:1×16,插损:28±1.0 dB,相位动态范围:360°
    2004 Germany 波导型PD[106] 带宽:100 GHz,响应度:0.66 A/W
    2010 USA OPLL[107] 带宽:300 MHz
    2011 USA 可编程微波光子滤波器[108] 带宽:1.9~14 GHz, SFDR: 86.3 dB×Hz2/3
    2013 China DFB激光器阵列[109] 通道数:4
    2014 Germany 平衡PD[110] 带宽:80 GHz,响应度:0.5 A/W
    2016 Germany DFB+IQ电光调制器[111] 带宽:43 GHz,耦合损耗:0.1 dB
    2017 Sweden 外调制激光器[112] 带宽:100 GHz,消光比:~30 dB
    2017 Japan IQ调制器[113] 带宽:>67 GHz,半波电压:1.5 V,消光比:~30 dB
    2017 China AWG+PD[114] 响应度:0.68 A/W,带宽:>16 GHz,通道数:13
    2017 Germany 波导型PD[115] 带宽:80 GHz,响应度:0.5 A/W
    2017 Germany 波导型平衡PD[116] 带宽:115 GHz,响应度:0.25 A/W
    2018 UK 开关阵列[10] 规模:4×4,串扰:–47 dB
    Si 2004 USA 调制器[29] 带宽:1 GHz,调制效率:8 V·cm,插损:15.3 dB,静态消光比:16 dB
    2005 USA 拉曼激光器[23] 波长:1.67 μm,线宽:80 MHz,边模抑制比:55 dB
    2007 USA 调制器[30] 带宽:30 GHz,速率:40 Gbit/s,动态消光比:1.1 dB
    2007 USA GeSi探测器[36] 带宽:31 GHz,响应度:0.89 A/W,暗电流:169 nA
    2009 USA GeSi探测器[37] 带宽:36.8 GHz,响应度:1.1 A/W
    2011 China 延时线[47] 延时量:–15~85 ps
    2012 USA GeSi激光器[26] 波长:1520~1700 nm,线宽:<1.2 nm,输出功率:>1 mW
    2012 UK 调制器[31] 消光比:3.1 dB,调制效率:2.8 V·cm,带宽:20 GHz
    2012 China 调制器[32] 消光比:3.9 dB@40 Gbit/s,调制效率:2.6 V·cm
    2012 China 延时线[48] 延时量:270 ps, FWHM=2.1 GHz
    2013 Australia 微波带阻滤波器[50] FWHM=247~840 MHz,抑制比:60 dB,中心频率范围:2~8 GHz
    2013 Singapore 调制器[33] 消光比:5.56 dB,调制效率:26.7 V·mm,带宽:25.6 GHz
    2013 China 微波带阻滤波器[44] 10 dB带宽:1.85~4.55 GHz,中心频率调谐范围:7~34 GHz
    2013 The Netherlands 波束形成网络[52] 规模:1×4,最大延时:236 ps,工作频率:10.70~12.75 GHz
    2016 China 开关阵列[45] 规模:16×16,串扰:–30 dB,开关时间:22 μm,插损:5.2 dB
    2017 Japan 调制器[34] 带宽:17 GHz,调制效率:0.8~1.86 V·cm
    2017 Canada 集成微波带通滤波器[42] FWHM=2.3 GHz,抑制比:17 dB,中心频率调谐范围:7~25 GHz
    2017 USA 波束形成网络[53] 规模:1×4,带宽:6 GHz,最大延时:209 ps
    2018 China 调制器[35] 带宽:60 GHz,速率:100 Gbit/s,调制效率1.4 V·cm,插损:5.4 dB
    2018 China GeSi探测器[40] 带宽:25 GHz,响应度:0.88 A/W
    2018 Canada 集成OEO[41] 相噪:–80 dBc/Hz,频率:2~8 GHz
    2018 China 微波带通滤波器[43] FWHM=170 MHz,抑制比:26.5 dB,中心频率调谐范围:2.0~18.4 GHz
    2018 USA 真延时[51] 损耗:0.89 dB/ns,延时量调谐范围:0~3.4 ns,带宽:10 GHz@500 ps
    LiNbO3 1998 Israel 调制器[117] 带宽:40 GHz,半波电压:4.2 V
    2007 Switzerland 可调谐谐振腔[118] R=100 μm, Q=4×103,清晰度F=5
    2009 USA 调制器[65] 带宽:~100 GHz,半波电压:7 V,插损:3.7 dB
    2010 China 1×2 Y分支光开关[119] 串扰:–30 dB
    Polymer 1997 USA 调制器[81] 带宽:113 GHz
    2002 USA 环形滤波器、调制器[76] Q=1.3×105,谐振调谐效率:0.82 GHz/V
    2015 China 开关阵列[120] 规模:1×32
    2016 China 调制器[121] 电光系数:50 pm/V,半波电压:1.94 V
    SPP 2010 Denmark 热光开关[122] 器件长度:<100 μm
    2015 Switzerland 天线+调制器 工作频率:60 GHz,转换效率:–25 dB
    2017 Switzerland 调制器[83] 器件长度:几十μm,带宽:>70 GHz
    2018 Switzerland 环形调制器[123] R=1 μm, Q=30, FSR≈115 nm
    Graphe 2011 USA 调制器[68] 光带宽:1.35~1.6 μm
    2013 Turkey 调制器[124] 光带宽:450 nm~2 μm
    2015 UK 调制器[125] 调制深度:>0.03 dB/μm
    Si-InP 2016 Belgium 激光器[90] 波长:1566 nm,边模抑制比:45 dB,波导输出光功率:6 mW,直调带宽:15 GHz
    2016 USA 探测器[126] 响应度:0.64 A/W,输出功率:12 dBm@40 GHz,带宽:48 GHz
    2016 The Netherlands 波导型探测器 带宽:67 GHz,响应度:0.7 A/W
    2017 Japan 调制器[92] 带宽:2.2 GHz,调制效率:0.09 V·cm,消光比:3.1 dB@32 Gbit/s
    2018 Belgium 外调制激光器[127] 波长:1567 nm,边模抑制比:40 dB,波导输出光功率:3 mW,带宽:20 GHz,静态消光比:15 dB
    Si-LiNbO3 2014 USA 环形调制器[128] 带宽:5 GHz, Q值:14000,谐振调谐效率:3.3 pm/V
    2016 USA 调制器[67] 带宽:>8 GHz,半波电压:2.5 V,消光比:13.8 dB
    2016 USA 调制器[96] 带宽:~40 GHz
    2018 USA 调制器[97] 带宽:100 GHz,半波电压:5 V,消光比:~30 dB
    2019 China 调制器[98] 带宽:>70 GHz,半波电压:<7.4 V,消光比:~40 dB,插损:2.5 dB
    2019 USA 电光可调谐光频梳[129] 调谐范围:10~100 MHz
    下载: 导出CSV
  • [1] CAPMANY J and NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319–330. doi: 10.1038/nphoton.2007.89
    [2] 潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52.PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52.
    [3] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [4] CAPMANY J, LI Guifang, LIM C, et al. Microwave photonics: Current challenges towards widespread application[J]. Optics Express, 2013, 21(19): 22862–22867. doi: 10.1364/OE.21.022862
    [5] MARPAUNG D, ROELOFFZEN C, HEIDEMAN R, et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 2013, 7(4): 506–538. doi: 10.1002/lpor.201200032
    [6] MUÑOZ P, CAPMANY J, PÉREZ D, et al. Integrated microwave photonics: State of the art and future trends[C]. Proceedings of the 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 2014: 1–4. doi: 10.1109/ICTON.2014.6876725.
    [7] HOU Lianping, HAJI M, AKBAR J, et al. AlGaInAs/InP monolithically integrated DFB laser array[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 137–143. doi: 10.1109/JQE.2011.2174455
    [8] SADIQ M U, ROYCROFT B, O’CALLAGHAN J, et al. Efficient modelling approach for an InP based Mach-Zehnder modulator[C]. Proceedings of the 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies, Limerick, Ireland, 2014. doi: 10.1049/cp.2014.0671.
    [9] AUGUSTIN L M, HANFOUG R, VAN DER TOL J J G M, et al. A compact integrated polarization splitter/converter in InGaAsP-InP[J]. IEEE Photonics Technology Letters, 2007, 19(17): 1286–1288. doi: 10.1109/LPT.2007.902277
    [10] DING Minsheng, WONFOR A, Cheng Qixiang, et al. Hybrid MZI-SOA InGaAs/InP photonic integrated switches[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(1): 3600108. doi: 10.1109/JSTQE.2017.2759278
    [11] SMIT M, LEIJTENS X, AMBROSIUS H, et al. An introduction to InP-based generic integration technology[J]. Semiconductor Science and Technology, 2014, 29(8): 083001. doi: 10.1088/0268-1242/29/8/083001
    [12] VAN DER TOL J J G M, OEI Y S, KHALIQUE U, et al. InP-based photonic circuits: Comparison of monolithic integration techniques[J]. Progress in Quantum Electronics, 2010, 34(4): 135–172. doi: 10.1016/j.pquantelec.2010.02.001
    [13] WU Fang, TOLSTIKHIN V I, DENSMORE A S, et al. Two-step lateral taper spot-size converter for efficient fiber coupling to InP-based photonic integrated circuits[C]. Proceedings Volume 5577, Photonics North 2004: Optical Components and Devices, Ottawa, Ontario, Canada, 2004: 213–220. doi: 10.1117/12.567349.
    [14] KOHTOKU M, OKU S, KADOTA Y, et al. Spotsize converter with improved design for InP-based deep-ridge waveguide structure[J]. Journal of Lightwave Technology, 2005, 23(12): 4207–4214. doi: 10.1109/JLT.2005.854042
    [15] KITAMURA T, KONO N, YAGI H, et al. Dual-core spot-size converter with tapered cladding layer designed for high-efficiency mode coupling to InP-based deep-ridge waveguide[C]. Proceedings of 2014 IEEE Photonics Conference, San Diego, USA, 2014: 280–281. doi: 10.1109/IPCon.2014.6995353.
    [16] SOARES F M, KAROUTA F, GELUK E J, et al. A compact and fast photonic true-time-delay beamformer with integrated spot-size converters[C]. Proceedings of Integrated Photonics Research and Applications/Nanophotonics, Uncasville, Connecticut United States, 2006. doi: 10.1364/IPRA.2006.IMF5.
    [17] KIM D J, HAN W S, KIM D Y, et al. InP-based vertical dual-waveguide fiber-coupling structure[C]. Proceedings of the 12th International Conference on Optical Internet, Jeju, South Korea, 2014: 1–2. doi: 10.1109/COIN.2014.6950599.
    [18] TOLSTIKHIN V, SAEIDI S, and DOLGALEVA K. Design optimization and tolerance analysis of a spot-size converter for the taper-assisted vertical integration platform in InP[J]. Applied Optics, 2018, 57(13): 3586–3591. doi: 10.1364/AO.57.003586
    [19] WON R and PANICCIA M. Integrating silicon photonics[J]. Nature Photonics, 2010, 4(8): 498–499. doi: 10.1038/nphoton.2010.189
    [20] ZHUANG Leimeng, MARPAUNG D, BURLA M, et al. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing[J]. Optics Express, 2011, 19(23): 23162–23170. doi: 10.1364/OE.19.023162
    [21] ROELOFFZEN C G H, ZHUANG Leimeng, TADDEI C, et al. Silicon nitride microwave photonic circuits[J]. Optics Express, 2013, 21(19): 22937–22961. doi: 10.1364/OE.21.022937
    [22] SOREF R. The past, present, and future of silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1678–1687. doi: 10.1109/JSTQE.2006.883151
    [23] RONG Haisheng, JONES R, LIU Ansheng, et al. A continuous-wave Raman silicon laser[J]. Nature, 2005, 433(7027): 725–728. doi: 10.1038/nature03346
    [24] LIU Jifeng, SUN Xiaochen, PAN Dong, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si[J]. Optics Express, 2007, 15(18): 11272–11277. doi: 10.1364/OE.15.011272
    [25] LIU Jifeng, SUN Xiaochen, CAMACHO-AGUILERA R, et al. Ge-on-Si laser operating at room temperature[J]. Optics Letters, 2010, 35(5): 679–681. doi: 10.1364/OL.35.000679
    [26] CAMACHO-AGUILERA R E, CAI Yan, PATEL N, et al. An electrically pumped germanium laser[J]. Optics Express, 2012, 20(10): 11316–11320. doi: 10.1364/OE.20.011316
    [27] LIU Jifeng, KIMERLING L C, and MICHEL J. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration[J]. Semiconductor Science and Technology, 2012, 27(9): 094006. doi: 10.1088/0268-1242/27/9/094006
    [28] DUTT B, SUKHDEO D S, NAM D, et al. Roadmap to an efficient germanium-on-silicon laser: Strain vs. n-type doping[J]. IEEE Photonics Journal, 2012, 4(5): 2002–2009. doi: 10.1109/jphot.2012.2221692
    [29] LIU Ansheng, JONES R, LIAO L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 2004, 427(6975): 615–618. doi: 10.1038/nature02310
    [30] LIAO L, LIU A, RUBIN D, et al. 40 Gbit/s silicon optical modulator for highspeed applications[J]. Electronics Letters, 2007, 43(22): 9944669. doi: 10.1049/el:20072253
    [31] THOMSON D J, GARDES F Y, FEDELI J M, et al. 50-Gb/s silicon optical modulator[J]. IEEE Photonics Technology Letters, 2012, 24(4): 234–236. doi: 10.1109/LPT.2011.2177081
    [32] HU Yingtao, XIAO Xi, XU Hao, et al. High-speed silicon modulator based on cascaded microring resonators[J]. Optics Express, 2012, 20(14): 15079–15085. doi: 10.1364/oe.20.015079
    [33] TU Xiaoguang, LIOW T Y, SONG Junfeng, et al. 50-Gb/s silicon optical modulator with traveling-wave electrodes[J]. Optics Express, 2013, 21(10): 12776–12782. doi: 10.1364/OE.21.012776
    [34] MAEGAMI Y, CONG Guangwei, OHNO M, et al. High-efficiency strip-loaded waveguide based silicon Mach-Zehnder modulator with vertical p-n junction phase shifter[J]. Optics Express, 2017, 25(25): 31407–31416. doi: 10.1364/oe.25.031407
    [35] LI Miaofeng, WANG Lei, LI Xiang, et al. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications[J]. Photonics Research, 2018, 6(2): 109–116. doi: 10.1364/prj.6.000109
    [36] YIN Tao, COHEN R, MORSE M M, et al. 31GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate[J]. Optics Express, 2007, 15(21): 13965–13971. doi: 10.1364/OE.15.013965
    [37] FENG Dazeng, LIAO Shirong, DONG Po, et al. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide[J]. Applied Physics Letters, 2009, 95(26): 261105. doi: 10.1063/1.3279129
    [38] MICHEL J, LIU Jifeng, and KIMERLING L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8): 527–534. doi: 10.1038/nphoton.2010.157
    [39] LIAO Shirong, FENG Ningning, FENG Dazeng, et al. 36 GHz submicron silicon waveguide germanium photodetector[J]. Optics Express, 2011, 19(11): 10967–10972. doi: 10.1364/OE.19.010967
    [40] CUI Jishi, BAI Bowen, YANG Fenghe, et al. Optical saturation characteristics of dual- and single-injection Ge-on-Si photodetectors[J]. Chinese Optics Letters, 2018, 16(7): 072502.
    [41] ZHANG Weifeng and YAO Jianping. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation[J]. Journal of Lightwave Technology, 2018, 36(19): 4655–4663. doi: 10.1109/JLT.2018.2829823
    [42] ZHANG Weifeng and YAO Jianping. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter[J]. Optics Letters, 2018, 43(15): 3622–3625. doi: 10.1364/OL.43.003622
    [43] QIU Huaqing, ZHOU Feng, QIE Jinran, et al. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator[J]. Journal of Lightwave Technology, 2018, 36(19): 4312–4318. doi: 10.1109/JLT.2018.2822829
    [44] ZHANG Dengke, FENG Xue, LI Xiangdong, et al. Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 2013, 31(23): 3668–3675. doi: 10.1109/jlt.2013.2287091
    [45] ZHAO Shuoyi, LU Liangjun, ZHOU Linjie, et al. 16×16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters[J]. Photonics Research, 2016, 4(5): 202–207. doi: 10.1364/PRJ.4.000202
    [46] TESTA F, OTON C J, KOPP C, et al. Design and implementation of an integrated reconfigurable silicon photonics switch matrix in IRIS project[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 155–168. doi: 10.1109/JSTQE.2016.2547322
    [47] HU Yingtao, XIAO Xi, LI Xianyao, et al. Continuously tunable time delay and advance in coupling-modulated microring resonators[C]. Proceedings of SPIE 8333, Photonics and Optoelectronics Meetings 2011: Optoelectronic Devices and Integration, Wuhan, China, 2011: 833303. doi: 10.1117/12.920404.
    [48] ZHOU L, SUN X, XIE J, et al. Characterisation of microring resonator optical delay and its dependence on coupling gap using modulation phase-shift technique[J]. Electronics Letters, 2012, 48(25): 1613–1614. doi: 10.1049/el.2012.2743
    [49] WANG Junjia, ASHRAFI R, ADAMS R, et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line[J]. Scientific Reports, 2016, 6: 30235. doi: 10.1038/srep30235
    [50] MARPAUNG D, MORRISON B, PANT R, et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection[J]. Optics Express, 2013, 21(20): 23286–23294. doi: 10.1364/OE.21.023286
    [51] XIANG Chao, DAVENPORT M L, KHURGIN J B, et al. Low-loss continuously tunable optical true time delay based on si3n4 ring resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 5900109. doi: 10.1109/JSTQE.2017.2785962
    [52] BURLA M, MARPAUNG D, ZHUANG Leimeng, et al. Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control[J]. IEEE Photonics Technology Letters, 2013, 25(12): 1145–1148. doi: 10.1109/LPT.2013.2257723
    [53] LIU Yuan, WICHMAN A, ISAAC B, et al. Tuning optimization of ring resonator delays for integrated optical beam forming networks[J]. Journal of Lightwave Technology, 2017, 35(22): 4954–4960. doi: 10.1109/JLT.2017.2762641
    [54] KAMINOW I P, CARRUTHERS J R, TURNER E H, et al. Thin-film LiNbO3 electro-optic light modulator[J]. Applied Physics Letters, 1973, 22(10): 540–542. doi: 10.1063/1.1654500
    [55] HOWERTON M M, MOELLER R P, GREENBLATT A S, et al. Fully packaged, broad-band LiNbO3 modulator with low drive voltage[J]. IEEE Photonics Technology Letters, 2000, 12(7): 792–794. doi: 10.1109/68.853502
    [56] DOLFI D W and RANGANATH T R. 50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section[J]. Electronics Letters, 1992, 28(13): 1197–1198. doi: 10.1049/el:19920756
    [57] IZUTSU M, YAMANE Y, and SUETA T. Broad-band traveling-wave modulator using a LiNbO3 optical waveguide[J]. IEEE Journal of Quantum Electronics, 1977, 13(4): 287–290. doi: 10.1109/JQE.1977.1069310
    [58] KAWANISHI T, SAKAMOTO T, TSUCHIYA M, et al. 70dB extinction-ratio LiNbO3 optical intensity modulator for two-tone lightwave generation[C]. Proceedings of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, California, USA, 2006: 1–3. doi: 10.1109/OFC.2006.215457.
    [59] KONDO J, AOKI K, IWATA Y, et al. 76-GHz millimeter-wave generation using MZ LiNbO3 modulator with drive voltage of 7 Vp-pand 19 GHz signal input[C]. Proceedings of 2005 International Topical Meeting on Microwave Photonics, Seoul, Korea, 2005. doi: 10.1109/MWP.2005.203613.
    [60] SAKAMOTO T, KAWANISHI T, and IZUTSU M. Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation[J]. Optics Letters, 2006, 31(6): 811–813. doi: 10.1364/OL.31.000811
    [61] BONINO S, GALEOTTI R, GOBBI L, et al. High speed packaging solutions for LiNbO3 electro-optical modulator[C]. Proceedings of 2009 European Microelectronics and Packaging Conference, Rimini, Italy, 2009: 1–5.
    [62] GUTIÉRREZ-MARTINEZ C, AND H P, and GOEDGEBUER J P. Microwave integrated optics LiNbO3 coherence modulator for high‐speed optical communications[J]. Microwave and Optical Technology Letters, 1995, 10(1): 66–70. doi: 10.1002/mop.4650100121
    [63] KAWANISHI T and KANNO A. LiNbO3 modulator for modern optical communications[C]. Proceedings of the 17th Opto-Electronics and Communications Conference, Busan, South Korea, 2012: 65–66. doi: 10.1109/OECC.2012.6276373.
    [64] SHIGEMATSU H, SATO M, HIROSE T, et al. A 54-GHz distributed amplifier with 6-VPP output for a 40-Gb/s LiNbO3 modulator driver[J]. IEEE Journal of Solid-State Circuits, 2002, 37(9): 1100–1105. doi: 10.1109/JSSC.2002.801167
    [65] MACARIO J, YAO Peng, SHIREEN R, et al. Development of electro-optic phase modulator for 94 GHz imaging system[J]. Journal of Lightwave Technology, 2009, 27(24): 5698–5703. doi: 10.1109/JLT.2009.2035641
    [66] WANG Cheng, ZHANG Mian, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547–1555. doi: 10.1364/OE.26.001547
    [67] JIN Shilei, XU Longtao, ZHANG Haihua, et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides[J]. IEEE Photonics Technology Letters, 2016, 28(7): 736–739. doi: 10.1109/LPT.2015.2507136
    [68] LIU Ming, YIN Xiaobo, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64–67. doi: 10.1038/nature10067
    [69] KOESTER S J and LI Mo. High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Applied Physics Letters, 2012, 100(17): 171107. doi: 10.1063/1.4704663
    [70] LI Wei, CHEN Bigeng, MENG Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955–959. doi: 10.1021/nl404356t
    [71] YOUNGBLOOD N, ANUGRAH Y, MA Rui, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Letters, 2014, 14(5): 2741–2746. doi: 10.1021/nl500712u
    [72] PHARE C T, LEE Y H D, CARDENAS J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511–514. doi: 10.1038/nphoton.2015.122
    [73] KEIL N, YAO H H, ZAWADZKI C, et al. 4×4 polymer thermo-optic directional coupler switch at 1.55μm[J]. Electronics Letters, 1994, 30(8): 639–540. doi: 10.1049/el:19940457
    [74] SHI Yongqiang, LIN Weiping, OLSON D J, et al. Electro-optic polymer modulators with 0.8 V half-wave voltage[J]. Applied Physics Letters, 2000, 77(1): 1. doi: 10.1063/1.126857
    [75] ZHANG Hua, OH M C, SZEP A, et al. Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at both 1310 and 1550 nm[J]. Applied Physics Letters, 2001, 78(20): 3136–3138. doi: 10.1063/1.1372203
    [76] RABIEI P, STEIER W H, ZHANG Cheng, et al. Polymer micro-ring filters and modulators[J]. Journal of Lightwave Technology, 2002, 20(11): 1968–1975. doi: 10.1109/JLT.2002.803058
    [77] SONG H C, OH M C, AHN S W, et al. Flexible low-voltage electro-optic polymer modulators[J]. Applied Physics Letters, 2003, 82(25): 4432–4434. doi: 10.1063/1.1586474
    [78] BORTNIK B, HUNG Y C, TAZAWA H, et al. Electrooptic polymer ring resonator modulation up to 165 GHz[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 104–110. doi: 10.1109/jstqe.2006.887156
    [79] CHEN H, CHEN B, HUANG D, et al. Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss[J]. Applied Physics Letters, 2008, 93(4): 043507. doi: 10.1063/1.2965809
    [80] CHEN Changming, ZHANG Feng, WANG Hui, et al. UV curable electro-optic polymer switch based on direct photodefinition technique[J]. IEEE Journal of Quantum Electronics, 2011, 47(7): 959–964. doi: 10.1109/JQE.2011.2145412
    [81] CHEN Datong, FETTERMAN H R, CHEN Antao, et al. Demonstration of 110 GHz electro-optic polymer modulators[J]. Applied Physics Letters, 1997, 70(25): 3335–3337. doi: 10.1063/1.119162
    [82] CAI Wenshan, WHITE J S, and BRONGERSMA M L. Compact, high-speed and power-efficient electrooptic plasmonic modulators[J]. Nano Letters, 2009, 9(12): 4403–4411. doi: 10.1021/nl902701b
    [83] AYATA M, FEDORYSHYN Y, HENI W, et al. High-speed plasmonic modulator in a single metal layer[J]. Science, 2017, 358(6363): 630–632. doi: 10.1126/science.aan5953
    [84] HIRAKI T, AIHARA T, HASEBE K, et al. Heterogeneously integrated InP/Si metal-oxide-semiconductor capacitor Mach-Zehnder modulator[C]. Proceedings of 2017 Optical Fiber Communications Conference and Exhibition, Los Angeles, USA, 2017: 1–3. doi: 10.1364/OFC.2017.W3E.1.
    [85] Chen H. High-speed hybrid silicon Mach-Zehnder modulator and tunable microwave filter[D]. [Ph.D. dissertation], University of California Santa Barbara, 2011.
    [86] CHEN Huiwen, KUO Yinghao, and BOWERS J E. A high speed Mach-Zehnder silicon evanescent modulator using capacitively loaded traveling wave electrode[C]. Proceedings of the 6th IEEE International Conference on Group IV Photonics, San Francisco, 2009. doi: 10.1109/GROUP4.2009.5338370.
    [87] LAMPONI M, KEYVANINIA S, JANY C, et al. Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler[J]. IEEE Photonics Technology Letters, 2012, 24(1): 76–78. doi: 10.1109/LPT.2011.2172791
    [88] ROELKENS G, VAN THOURHOUT D, BAETS R, et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit[J]. Optics Express, 2006, 14(18): 8154–8159. doi: 10.1364/OE.14.008154
    [89] ABBASI A, MOENECLAEY B, VERBIST J, et al. 56 Gb/s direct modulation of an InP-on-Si DFB laser diode[C]. Proceedings of 2017 IEEE Optical Interconnects Conference, Santa Fe, USA, 2017: 31–32. doi: 10.1109/OIC.2017.7965516.
    [90] ABBASI A, SPATHARAKIS C, KANAKIS G, et al. High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser[J]. Journal of Lightwave Technology, 2016, 34(8): 1683–1687. doi: 10.1109/JLT.2015.2510868
    [91] BELING A, PIELS M, CROSS A S, et al. High-power InP-based waveguide photodiodes and photodiode arrays heterogeneously integrated on SOI[C]. Proceedings of 2012 International Conference on Indium Phosphide and Related Materials, Santa Barbara, USA, 2012. doi: 10.1109/ICIPRM.2012.6403349.
    [92] HIRAKI T, AIHARA T, HASEBE K, et al. Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator[J]. Nature Photonics, 2017, 11(8): 482–485. doi: 10.1038/nphoton.2017.120
    [93] SHEN L, JIAO Y, YAO W, et al. High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform[J]. Optics Express, 2016, 24(8): 8290–8301. doi: 10.1364/OE.24.008290
    [94] RAO A and FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 3400114. doi: 10.1109/JSTQE.2017.2779869
    [95] MERCANTE A J, ENG D L K, KONKOL M, et al. Thin LiNbO3 on insulator electro-optic modulator[J]. Optics Letters, 2016, 41(5): 867–869. doi: 10.1364/OL.41.000867
    [96] MERCANTE A J, YAO Peng, SHI Shouyuan, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics Express, 2016, 24(14): 15590–15595. doi: 10.1364/oe.24.015590
    [97] WANG Cheng, ZHANG Mian, CHEN Xi, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101–104. doi: 10.1038/s41586-018-0551-y
    [98] HE Mingbo, XU Mengyue, REN Yuxuan, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond[J]. Nature Photonics, 2019: 1–6. doi: 10.1038/s41566-019-0378-6
    [99] LINDENMANN N, BALTHASAR G, PALMER R, et al. Photonic wire bonding for single-mode chip-to-chip interconnects[C]. Proceedings of the 8th IEEE International Conference on Group IV Photonics, London, UK, 2011: 380–382. doi: 10.1109/GROUP4.2011.6053823.
    [100] LINDENMANN N, BALTHASAR G, HILLERKUSS D, et al. Photonic wire bonding: A novel concept for chip-scale interconnects[J]. Optics Express, 2012, 20(16): 17667–17677. doi: 10.1364/oe.20.017667
    [101] KOOS C, LEUTHOLD J, FREUDE W, et al. Photonic wire bonding: Connecting nanophotonic circuits across chip boundaries[C]. Proceedings of SPIE 8613, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI, San Francisco, 2013: 86130W. doi: 10.1117/12.2003096.
    [102] LINDENMANN N, DOTTERMUSCH S, GOEDECKE M L, et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding[J]. Journal of Lightwave Technology, 2015, 33(4): 755–760. doi: 10.1109/jlt.2014.2373051
    [103] HOOSE T, BILLAH M, BLAICHER M, et al. Multi-chip integration by photonic wire bonding: Connecting surface and edge emitting lasers to silicon chips[C]. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition, Anaheim, USA, 2016: 1–3. doi: 10.1364/OFC.2016.M2I.7.
    [104] BILLAH M R, BLAICHER M, HOOSE T, et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding[J]. Optica, 2018, 5(7): 876–883. doi: 10.1364/OPTICA.5.000876
    [105] STULEMEIJER J, VAN VLIET F E, BENOIST K W, et al. Compact photonic integrated phase and amplitude controller for phased-array antennas[J]. IEEE Photonics Technology Letters, 1999, 11(1): 122–124. doi: 10.1109/68.736416
    [106] BACH H G, BELING A, MEKONNEN G G, et al. InP-based waveguide-integrated photodetector with 100-GHz bandwidth[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4): 668–672. doi: 10.1109/jstqe.2004.831510
    [107] RISTIC S, BHARDWAJ A, RODWELL M J, et al. An optical phase-locked loop photonic integrated circuit[J]. Journal of Lightwave Technology, 2010, 28(4): 526–538. doi: 10.1109/JLT.2009.2030341
    [108] NORBERG E J, GUZZON R S, PARKER J S, et al. Programmable photonic microwave filters monolithically integrated in InP-InGaAsP[J]. Journal of Lightwave Technology, 2011, 29(11): 1611–1619. doi: 10.1109/JLT.2011.2134073
    [109] ZHU Hongliang, MA Li, LIANG Song, et al. InP based DFB laser array integrated with MMI coupler[J]. Science China Technological Sciences, 2013, 56(3): 573–578. doi: 10.1007/s11431-012-5118-9
    [110] RUNGE P, ZHOU Gan, SEEGER A, et al. 80GHz balanced photodetector chip for next generation optical networks[C]. Proceedings of 2014 Optical Fiber Communication Conference, San Francisco, USA, 2014. doi: 10.1364/OFC.2014.M2G.3.
    [111] LANGE S, YAN L, WOLF N, et al. Low power InP-based monolithic DFB-laser IQ modulator with SiGe differential driver for 32 GBd QPSK modulation[C]. Proceedings of 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 2015. doi: 10.1109/ECOC.2015.7341851.
    [112] OZOLINS O, PANG Xiaodan, OLMEDO M I, et al. 100 GHz externally modulated laser for optical interconnects[J]. Journal of Lightwave Technology, 2017, 35(6): 1174–1179. doi: 10.1109/JLT.2017.2651947
    [113] OGISO Y, OZAKI J, UEDA Y, et al. Over 67 GHz bandwidth and 1.5 V Vp InP-based optical IQ modulator with n-i-p-n heterostructure[J]. Journal of Lightwave Technology, 2017, 35(8): 1450–1455. doi: 10.1109/JLT.2016.2639542
    [114] LV Qianqian, HAN Qin, PAN Pan, et al. Monolithic integration of a InP AWG and InGaAs photodiodes on InP platform[J]. Optics & Laser Technology, 2017, 90: 122–127. doi: 10.1016/j.optlastec.2016.08.012
    [115] ZHOU Gan, RUNGE P, KEYVANINIA S, et al. High-power InP-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. Journal of Lightwave Technology, 2017, 35(4): 717–721. doi: 10.1109/jlt.2016.2591266
    [116] RUNGE P, GAN Zhou, BECKERWERTH T, et al. Waveguide integrated balanced photodetectors for coherent receiver[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 6100307. doi: 10.1109/JSTQE.2017.2723844
    [117] HOPFER S, SHANI Y, and NIR D. A novel, wideband, lithium niobate electrooptic modulator[J]. Journal of Lightwave Technology, 1998, 16(1): 73–77. doi: 10.1109/50.654986
    [118] GUARINO A, POBERAJ G, REZZONICO D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1(7): 407–410. doi: 10.1038/nphoton.2007.93
    [119] WANG Huan, LI Xihua, ZHOU Qiang, et al. LiNbO3 based 1×2 Y-branch digital optical switch integrated with S-bend variable optical attenuator[C]. Proceedings of 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, 2010. doi: 10.1109/SOPO.2010.5504362.
    [120] 胡国华, 恽斌峰, 崔一平. 有机聚合物1×32波导热光开关阵列[J]. 光电子·激光, 2015, 26(10): 1873–1877. doi: 10.16136/j.joel.2015.10.0529HU Guohua, YUN Binfeng, and CUI Yiping. Polymer 1×32 waveguide thermo-optical switch array[J]. Journal of Optoelectronics · Laser, 2015, 26(10): 1873–1877. doi: 10.16136/j.joel.2015.10.0529
    [121] TANG Jie, WANG Longde, LI Ruozhou, et al. Low half-wave voltage Y-branch electro-optic polymer modulator based on side-chain polyurethane-imide[J]. Modern Physics Letters B, 2016, 30(17): 1650228. doi: 10.1142/S0217984916502286
    [122] GOSCINIAK J, BOZHEVOLNYI S I, ANDERSEN T B, et al. Thermo-optic control of dielectric-loaded plasmonic waveguide components[J]. Optics Express, 2010, 18(2): 1207–1216. doi: 10.1364/OE.18.001207
    [123] HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 2018, 556(7702): 483–486. doi: 10.1038/s41586-018-0031-4
    [124] POLAT E O and KOCABAS C. Broadband optical modulators based on graphene supercapacitors[J]. Nano Letters, 2013, 13(12): 5851–5857. doi: 10.1021/nl402616t
    [125] ANSELL D, RADKO I P, HAN Z, et al. Hybrid graphene plasmonic waveguide modulators[J]. Nature Communications, 2015, 6: 8846. doi: 10.1038/ncomms9846
    [126] XIE Xiaojun, ZHOU Qiugui, NORBERG E, et al. High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator[J]. Journal of Lightwave Technology, 2016, 34(1): 73–78. doi: 10.1109/JLT.2015.2491258
    [127] ABBASI A, VERBIST J, SHIRAMIN L A, et al. 100-Gb/s electro-absorptive duobinary modulation of an InP-on-Si DFB laser[J]. IEEE Photonics Technology Letters, 2018, 30(12): 1095–1098. doi: 10.1109/LPT.2018.2833145
    [128] CHEN Li, XU Qiang, WOOD M G, et al. Hybrid silicon and lithium niobate electro-optical ring modulator[J]. Optica, 2014, 1(2): 112–118. doi: 10.1364/optica.1.000112
    [129] ZHANG Mian, BUSCAINO B, WANG Cheng, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019. doi: 10.1038/s41586-019-1008-7
    [130] TAKECHI M, TATEIWA Y, KUROKAWA M, et al. 64 GBaud high-bandwidth micro intradyne coherent receiver using high-efficiency and high-speed InP-based photodetector integrated with 90° hybrid[C]. Proceedings of 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, USA, 2017. doi: 10.1364/OFC.2017.Th1A.2.
    [131] AIMONE A, FREY F, ELSCHNER R, et al. DAC-less 32-GBd PDM-256-QAM using low-power InP IQ segmented MZM[J]. IEEE Photonics Technology Letters, 2017, 29(2): 221–223. doi: 10.1109/LPT.2016.2636364
    [132] LÓPEZ I G, AIMONE A, RITO P, et al. High-speed ultralow-power hybrid optical transmitter module with InP I/Q-SEMZM and BiCMOS drivers with 4-b integrated DAC[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(12): 4598–4610. doi: 10.1109/TMTT.2016.2622701
    [133] WANG Jian and SUNGJOO L. Ge-photodetectors for Si-based optoelectronic integration[J]. Sensors, 2011, 11(1): 696–718. doi: 10.3390/s110100696
    [134] KIM H S, KIM H J, HONG S E, et al. Fabrication and characteristics of an InP single HBT and waveguide PD on double stacked layers for an OEMMIC[J]. ETRI Journal, 2004, 26(1): 61–64. doi: 10.4218/etrij.04.0203.0018
    [135] FEDELI J M, BAKIR B B, OLIVIER N, et al. InP on SOI devices for optical communication and optical network on chip[C]. Proceedings of SPIE 7942, Optoelectronic Integrated Circuits XIII, San Francisco, 2011. doi: 10.1117/12.878607.
  • [1] 杨悦叶星炜张方正潘时龙 . 基于微波光子I/Q去斜接收的宽带线性调频雷达成像系统. 雷达学报, 2019, 8(2): 224-231. doi: 10.12000/JR19002
    [2] 杨利超高悦欣邢孟道盛佳恋 . 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法. 雷达学报, 2019, 8(2): 215-223. doi: 10.12000/JR18120
    [3] 高晖邓晔张金平周志鹏 . 微波光子相控阵的技术分析与展望. 雷达学报, 2019, 8(2): 251-261. doi: 10.12000/JR18105
    [4] 曹继明李若明杨继尧孙强李王哲 . 基于去调频接收技术的微波光子双波段线性调频连续波雷达. 雷达学报, 2019, 8(2): 189-197. doi: 10.12000/JR18119
    [5] 李尚远肖雪迪郑小平 . 基于微波光子学的分布式相参孔径雷达. 雷达学报, 2019, 8(2): 178-188. doi: 10.12000/JR19024
    [6] 符吉祥邢孟道徐丹王安乐 . 一种基于微波光子超高分辨雷达机翼振动参数估计方法. 雷达学报, 2019, 8(2): 232-242. doi: 10.12000/JR19001
    [7] 陈潇翔邢孟道 . 基于空变运动误差分析的微波光子超高分辨SAR成像方法. 雷达学报, 2019, 8(2): 205-214. doi: 10.12000/JR18121
    [8] 邵启红万显荣张德磊赵志欣柯亨玉 . 基于OFDM 波形的短波通信与超视距雷达集成实验研究. 雷达学报, 2012, 1(4): 370-379. doi: 10.3724/SP.J.1300.2012.20089
    [9] 孙勋黄平平涂尚坦杨祥立 . 利用多特征融合和集成学习的极化SAR图像分类. 雷达学报, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [10] 黄平平谭维贤苏莹王驰 . 直升机载弧形阵列MIMO微波成像技术研究. 雷达学报, 2015, 4(1): 11-19. doi: 10.12000/JR15005
    [11] 吴洋白杨殷红成张良聪 . 基于微波倍频源太赫兹频段雷达散射截面测量. 雷达学报, 2018, 7(1): 147-152. doi: 10.12000/JR17099
    [12] 吴一戎洪文张冰尘蒋成龙张柘赵曜 . 稀疏微波成像研究进展(科普类). 雷达学报, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [13] 张增辉郁文贤 . 稀疏微波SAR图像特征分析与目标检测研究. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [14] 刘媛陈洁方广有阴和俊 . 基于相移偏移的分层介质微波成像方法(英文). 雷达学报, 2015, 4(4): 431-438. doi: 10.12000/JR14152
    [15] 赵曜张冰尘洪文吴一戎 . 基于RIPless 理论的稀疏微波成像波形分析方法. 雷达学报, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032
    [16] 王宏强邓彬秦玉亮 . 太赫兹雷达技术. 雷达学报, 2018, 7(1): 1-21. doi: 10.12000/JR17107
    [17] 向寅张冰尘洪文 . 基于Lasso 的稀疏微波成像分块成像原理与方法研究(英文). 雷达学报, 2013, 2(3): 271-277. doi: 10.3724/SP.J.1300.2013.13011
    [18] 陈珲徐亮张言明周小阳崔铁军 . 超电大复杂目标太赫兹散射特性建模微波方法延拓研究. 雷达学报, 2018, 7(1): 108-118. doi: 10.12000/JR17097
    [19] 余凡袁捷 . 一种改进的随机粗糙地表的双尺度微波散射模型研究(英文). 雷达学报, 2015, 4(5): 560-570. doi: 10.12000/JR15067
    [20] 张柘张冰尘洪文吴一戎 . 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法. 雷达学报, 2016, 5(1): 25-34. doi: 10.12000/JR15055
  • 加载中
图(22)表(1)
计量
  • 文章访问数:  212
  • HTML浏览量:  287
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 录用日期:  2019-04-08
  • 网络出版日期:  2019-04-19
  • 刊出日期:  2019-04-01

微波光子集成芯片技术

    通讯作者: 钱广, chinaqgll@163.com
    作者简介: 钱 广(1985–),男,博士。现在南京电子器件研究所微波毫米波单片集成和模块电路重点实验室从事微波光子、激光雷达等方面的光电集成芯片、器件和组件研究。E-mail: chinaqgll@163.com;顾晓文(1989–),男,硕士。现在南京电子器件研究所微波毫米波单片集成和模块电路重点实验室从事微波光子集成器件等方面研究;孔月婵(1982–),女,博士。现为南京电子器件研究所微波毫米波单片集成和模块电路重点实验室研究员级高工。主要研究方向为半导体器件物理及异质异构集成技术等;陈堂胜(1964–),男,首席科学家。主要研究方向为半导体器件物理、工艺及异质集成技术等
  • ①. 南京电子器件研究所微波毫米波单片集成和模块电路重点实验室   南京   210016
  • ②. 空军装备部驻南京地区第二军事代表室   南京   210016
基金项目:  国家部委基金

摘要: 微波光子集成芯片技术是微波光子雷达的重要支撑技术,不仅可以实现器件的多功能化,缩小微波光子雷达的体积,还可以大大提升微波光子雷达的稳定性与可靠性。该文介绍了目前常用的InP基、Si基和铌酸锂基等材料体系及其异质异构集成的光子集成芯片技术和可用于微波光子混合集成的光电集成芯片技术,并展望了未来发展趋势。

English Abstract

    • “微波光子学”是一门微波和光两种技术相融合的新兴交叉学科,被定义为利用电光和光电器件对微波频段信号进行处理,并应用到微波系统及光通信系统等领域的技术,可实现传统微波方法过于复杂或不易实现甚至根本无法实现的功能[1]。经过近30年的发展,微波光子技术已在雷达、卫星通信、宽带无线接入网、空天一体化信息系统等诸多领域呈现出巨大的应用潜力,将对现代信息技术的发展产生深远影响。在雷达应用方面,更是受到了世界各国的重点关注。目前,美国、欧盟及俄罗斯等均针对该技术做了长远的发展规划,并投入了大量的人力与财力[2]。美国DARPA在20世纪80年代开始支持微波光子雷达研究,并形成了高线性模拟光链路、光控波束形成网络和微波光子雷达射频前端3个研究阶段规划。目前,美国DARPA的研究已经进入第3阶段,设立了诸多项目,大大推动了微波光子雷达基础技术的发展。欧盟以意大利芬梅卡尼卡集团为代表也针对微波光子雷达发展制定了4步走发展路线,并以全光的雷达为最终发展目标。2013年意大利国家光子网络实验室完成了全球首个结合微波光子多载波产生、发射和接收的光子雷达收发机,2014年将该工作发表于《Nature》[3],在全球掀起了微波光子雷达研究的热潮。俄罗斯也一直非常重视微波光子雷达研究,2014年俄罗斯政府以下一代雷达和电子战系统为应用目标,开始资助“射频光子相控阵”项目研究,旨在制造射频光子相控阵雷达。我国在微波光子技术方面的研究起步较晚,但近年来在微波光子雷达器件及系统方面也取得了瞩目的成就,研究单位包括国内诸多研究所和高校。

      随着对微波光子雷达研究的不断深入,目前基于分立光电子器件构建的微波光子系统已经逐渐显现出了其价格昂贵、功耗高、可靠性及稳定性低等缺点,难以满足微波光子雷达工程化应用需求。因此,微波光子雷达对微波光子器件提出了新的要求,即:在实现高速、大带宽及大动态范围同时,器件和系统还应具有尺寸小、重量轻、功耗低等特性[46]。集成化、芯片化已成为微波光子技术发展的必然趋势。芯片集成不仅能大幅降低微波光子雷达系统体积和功耗、提升整体稳定性,同时还能减小器件插入损耗、降低封装成本。另外,集成化、小型化的微波光子器件更满足大规模阵列化应用需求,这对微波光子相控阵雷达发展具有重要意义。

      微波光子雷达需求的芯片主要包括光子集成芯片、微波电路芯片及驱动电路芯片等。若将微波光子集成芯片分为:单一功能光子集成芯片、多功能光子集成芯片和微波光子混合集成芯片3个层次,目前国外在第1层次单一功能光子集成芯片方面的研究比较成熟,但仍在不断提高芯片性能,并研究新机理、新材料芯片;在第2层次芯片方面的研究比较早,且取得了不少令人瞩目的成果;针对第3层次微波光子混合集成芯片方面的研究,还尚处于研发阶段。与国外相比,国内起步较晚,多集中在第1层次芯片方面研究,与国外存在较大差距;在第2层次和第3层次芯片研究方面,国内研究都尚处于起步阶段,研究单位相对较少,主要受限于芯片加工能力。在微波光子雷达需求的芯片中,微波电路芯片及驱动电路芯片相对发展比较成熟,但微波电路芯片的带宽通常比较小,若能够进一步提升,实现其与光子芯片的大带宽匹配,则能在芯片层面更好地发挥微波光子技术的大带宽优势。

      总之,光子集成芯片技术和用于微波光子混合集成的光电集成芯片技术是目前能够推动微波光子雷达功能组件小型化发展的关键技术。因此,本文以微波光子器件的集成化、芯片化需求为背景,介绍了目前InP基、Si基和铌酸锂基等常用材料体系及其异质异构集成的微波光子集成芯片技术,并对未来发展趋势进行了展望。

    • 目前,光子集成技术常用材料体系主要包括:InP基化合物材料、硅基材料、LiNbO3晶体材料和聚合物、石墨烯、等离子激元等新兴材料,每种材料在光源、调制、探测、低损耗传输及大规模集成等方面均展现着各自独特的优势。本节将主要介绍这几种常用材料体系的光子集成芯片技术。

    • InP基化合物材料在光源、放大、调制、探测、衰减和集成光传输中都可应用,是多功能材料体系。InP基化合物材料的折射率高,具有较强的光约束能力,可实现高集成度。另外,InP基化合物材料在单片电路中也具有广泛应用,是光电混合集成的良好平台。因此,InP基化合物材料在大规模光子集成中具有巨大优势,其发展前景被众多研究人员看好。图1即是InP基大规模光子集成芯片,可以实现众多类型光子器件的单片集成。图2为典型InP基集成光子器件芯片[712]:(a)激光器,(b)电光调制器,(c)光电探测器,(d)偏振旋转器,(e)光耦合器,(f)阵列波导光栅(Arrayed Waveguide Grating, AWG), (g)光开关阵列。其中,激光器可实现大功率、低噪声,调制器可以实现大带宽、低半波电压、高消光比,探测器可以实现大带宽、高饱和、高响应度等,这些典型器件均能满足微波光子技术需求,具有广泛的应用。因此,InP基光子集成被认为是集成微波光子领域非常有前景的研究方向之一。

      图  1  InP基大规模光子集成芯片[11]

      Figure 1.  InP-based large-scale photonic integrated chip[11]

      图  2  典型InP基集成光子器件芯片[712]

      Figure 2.  Typical InP-based photonic integrated chips[712]

      但是,InP基光子器件的材料及器件结构复杂,工艺难度较大,材料及加工成本高,在一定程度上限制了InP光子器件的大规模集成应用。图3是典型InP光子器件的材料及波导结构示意图。可以看出,虽然InP基的光子器件芯片可采用同一InP材料体系,但不同光子器件的材料和器件结构还存在区别。按照器件类型不同,可将InP光子器件分为激光光源型、电光调制器型、深脊波导器件型、浅脊波导器件型和偏振旋转器型[11],或有源型光子器件和无源型光子器件。在InP光子芯片研究中,大规模光子集成一直是最终目标。为了实现InP有源型和无源型光子器件的单片集成,可采用材料多次外延技术,如图4所示,将有源光子器件和无源光子器件区域的材料分区生长,统一制备。

      图  3  典型InP基光子器件光波导结构示意图[11]

      Figure 3.  The optical waveguide structure of typical InP-based photonic devices[11]

      图  4  基于多次外延技术的InP基光子器件单片集成工艺[11]

      Figure 4.  Monolithic integration of InP-based photonic devices based on the multi-epitaxial growth[11]

      此外,由于InP基光波导与光纤中的光模式在尺寸上存在较大差异,因此在芯片与光纤的耦合处会引入很大耦合损耗。该损耗是InP基光子器件插损的最大来源,同时也是影响InP光子器件是否满足实际应用需求的主要因素之一。为了降低InP基光子芯片与光纤之间由模式失配造成的损耗,在光子芯片输入/输出端口需采用模式转换结构[1318],常见结构如图5所示。可以看出,每种模式转换器的结构都比较复杂,具有较高的工艺难度,尤其是在垂直方向采用斜面过渡的模斑转换结构(如图5(a)图5(c)所示)。

      图  5  典型InP基光子器件模斑转换器[1316]

      Figure 5.  Typical spot-size converter of InP-based photonic devices[1316]

    • Si基光子芯片常用的材料是SOI(Silicon-On-Insulator)[19]和SiN[20,21],制备工艺成熟、材料成本低,在无源光子器件应用中具有非常明显优势[22]。目前,基于成熟的硅基工艺,已经发展出了硅基光源[2328]、调制器[2935]、探测器[3640]、集成OEO(Optoelectronic Oscillator)[41]、滤波器[4244]、光开关阵列[45,46]、延时器[4749]等集成光子芯片,如图6图8所示。目前,基于硅材料的光学器件研究已经逐渐发展出了一门专一的学科,即硅基光子学。在成熟SOI加工工艺带动下,硅基无源光子器件发展迅速,功能较全面,研究已从单一功能芯片向多功能芯片发展。但硅基调制器的消光比还比较低,与传统的铌酸锂调制器差距较大,且带宽还需进一步提高。针对硅基光源的研究仍处于起步阶段,还需进一步深入研究。另外,SOI光波导损耗比较大,通常为几个dB/cm,无源器件的性能受到了一定限制。近年来,基于低损耗SiN光波导的无源器件得到了更广泛的关注与研究[5053],其非常适用于波束形成、延时阵列等芯片,如图9所示。

      图  6  Si基光子器件

      Figure 6.  Si-based photonic devices

      图  7  Si基集成OEO芯片[41]

      Figure 7.  Si-based integrated OEO chip[41]

      图  8  Si基光子器件

      Figure 8.  Si-based photonic devices

      图  9  SiN光子器件

      Figure 9.  SiN photonic devices

    • LiNbO3材料具有优越的电光性能,与InP基材料和Si基材料相比,LiNbO3材料的应用比较单一,主要集中在电光调制器[5463]。基于LiNbO3材料的电光调制器[55,56,64]是目前发展最成熟的电光调制器类型,在微波光子技术中已得到广泛应用。常用LiNbO3电光调制器芯片中的LiNbO3光波导通常采用质子交换或扩散工艺实现,工艺简单,光模式面积大,与光纤耦合损耗低。目前,这种商用LiNbO3电光调制器的带宽都可以大于60 GHz,半波电压小于等于5 V。甚至,有文献报道这种调制器可以实现约100 GHz的带宽[65]。虽然,这种调制器的性能很好,但器件尺寸都非常大,通常有几厘米的长度,难以与其它光子器件实现小型化集成,无法满足微波光子系统未来小型化、集成化发展需求。近年,新发展出了一种基于LiNbO3薄膜材料的电光调制器,如图10所示,该器件在带宽和尺寸等方面均呈现出了优于传统LiNbO3体材料电光调制器的趋势。但目前这种新型LiNbO3电光调制器还处于研发阶段,将来会在微波光子领域发挥重要应用价值[66,67]

      图  10  LiNbO3基集成光子芯片

      Figure 10.  LiNbO3-based integrated photonic chip

    • 除了以上3种典型材料体系的集成光子芯片外,目前还出现了石墨烯、聚合物、等离子激元等新型材料体系的集成光子器件,且表现出了令人惊喜的性能,如图11所示。例如:基于石墨烯材料的电光调制器[6872],带宽可以达到几十GHz;基于有机聚合物材料的集成光波导传输损耗低、制备工艺简单、成本低廉,且热光特性良好,在集成光子谐振腔及热光开关方面都有广泛应用[7380],其中聚合物电光调制器的带宽可超过100 GHz[81];等离子激元光波导对光具有很强的约束能力,能够突破衍射极限,且具有光电复用等优良特性,在微纳集成光子器件领域应用前景广阔。尤其,近年来还有研究人员将具有高电光系数的聚合物电光材料与狭缝等离子激元波导结合,实现了尺寸只有几十微米,带宽可超过70 GHz的超小型电光调制器,为实现高性能超集成电光调制器提供了非常可行的技术途径[82,83]。这些新技术为实现高性能集成微波光子器件提供了新方法,未来可能会在提升微波光子雷达性能方面发挥重要作用。

      图  11  新型集成光子器件

      Figure 11.  New integrated photonic devices

    • InP基材料、Si基材料和LiNbO3材料在微波光子器件中都具有广泛应用,但不同的材料体系均具有各自的优点和缺点。例如:InP材料非常适用于激光器、调制器和探测器,而且发展成熟,但光波导传输损耗大,不利于大规模的光子芯片集成;Si基光子器件集成度高、工艺成熟、成本低,但在光源、调制器方面的发展还不是很成熟;铌酸锂材料仅仅在电光调制器方面具有独特优势,但在其他光子器件方面的应用还比较少。因此,利用同一材料实现多种光子器件的高性能单片集成,还存在一定的难度。异质异构集成技术可以发挥各种材料的优势,是实现大规模多功能光子集成芯片的有效技术途径。目前研究的异质光子集成技术主要是InP-Si光子集成、LiNbO3-Si光子集成和光子异构集成。

      InP-Si光子集成主要是为了结合InP材料在激光器、调制器及探测器方面的优势和Si材料在无源光子器件方面的低成本及CMOS工艺兼容等优势。基于InP-Si光子集成方法,目前已经研制出了InP-Si异质集成电光调制器[8486]、InP-Si异质集成激光器[8790]、InP-Si异质集成光电探测器[91]和其它更复杂的多功能芯片,如图12所示。

      图  12  InP-Si光子集成器件

      Figure 12.  InP-Si integrated photonic devices

      LiNbO3-Si光子集成的主要目的是为了同时发挥LiNbO3器件优越的电光特性和Si基光子器件的各种优势。图13展示了常见LiNbO3-Si混合集成光波导结构(图13(b)图13(g))及其与传统LiNbO3光波导结构(图13(a))的区别[94]。目前,LiNbO3-Si光子集成方向的研究焦点主要是基于Si基LiNbO3薄膜材料(图13(b)图13(e)图13(g))的电光调制器[95,96]。Si基LiNbO3薄膜材料的衬底为Si基材料,中间层为SiO2,上表层为纳米厚度LiNbO3薄膜。Si基衬底材料可满足基于CMOS工艺的大规模Si光子集成需求,纳米级厚度的铌酸锂薄膜材料可以将光限制在很小的尺寸内,大大提高电光调制效率,缩短调制器尺寸。而且,中间层为SiO2的厚度可根据波速匹配需求灵活调整,这对提高调制器带宽非常有利。因此,与传统LiNbO3体材料相比,基于Si基LiNbO3薄膜材料的电光调制器能够实现更优异的性能指标。2018年哈佛大学研究团队采用图13(d)波导结构,成功研制出了带宽高达100 GHz、半波电压4.4 V、器件长度仅有5 mm的Si基LiNbO3薄膜电光调制器,如图14所示,该成果发表于《Nature》,在光电子领域引起了针对该器件的研究热潮[97]。2019年,中山大学研究人员又采用BCB材料实现了LiNbO3薄膜光波导与SOI光波导的混合集成[98],研制出的电光调制器带宽高于70 GHz,消光比达40 dB,器件整体插损仅有2.5 dB,如图15所示。

      图  13  传统LiNbO3 (LN)光波导和常用LiNbO3-Si混合集成光波导结构示意图[94]

      Figure 13.  Structural diagrams of traditional LiNbO3 optical waveguide and common LiNbO3-Si hybrid integrated optical waveguides[94]

      图  14  基于Si基LiNbO3薄膜的电光调制器[97]

      Figure 14.  Electro-optic modulator based on Si-based LiNbO3 film[97]

      图  15  Si-LiNbO3混合集成电光调制器[98]

      Figure 15.  Si-LiNbO3 hybrid integrated electro-optic modulator[98]

      InP-Si、LiNbO3-Si光子异质集成是基于芯片工艺实现不同材料或光子器件集成的一种技术。除了这种光子异质集成技术外,德国Christian Koos教授研究团队[99104]还开发出了一种和电路芯片中金丝互连技术类似的光丝互连技术(Photonic Wire Bonding, PWB),该技术不仅可以实现不同光子芯片之间的互连集成,还可以实现光纤与光子芯片波导端口的耦合,如图16所示。PWB中互连光波导的损耗可以小于3 dB,且受工作波长影响较小,是实现大规模光子集成的一种崭新技术途径。

      图  16  基于PWB技术的光子异质异构集成[104]

      Figure 16.  Photonic heterogeneous integration based on PWB technology[104]

      表1是以上介绍集成光子芯片技术中一些报道的集成光子器件及其性能。

      材料 时间 第一作者国籍 器件 指标
      InP 1999 The Netherlands 波束形成[105] 通道:1×16,插损:28±1.0 dB,相位动态范围:360°
      2004 Germany 波导型PD[106] 带宽:100 GHz,响应度:0.66 A/W
      2010 USA OPLL[107] 带宽:300 MHz
      2011 USA 可编程微波光子滤波器[108] 带宽:1.9~14 GHz, SFDR: 86.3 dB×Hz2/3
      2013 China DFB激光器阵列[109] 通道数:4
      2014 Germany 平衡PD[110] 带宽:80 GHz,响应度:0.5 A/W
      2016 Germany DFB+IQ电光调制器[111] 带宽:43 GHz,耦合损耗:0.1 dB
      2017 Sweden 外调制激光器[112] 带宽:100 GHz,消光比:~30 dB
      2017 Japan IQ调制器[113] 带宽:>67 GHz,半波电压:1.5 V,消光比:~30 dB
      2017 China AWG+PD[114] 响应度:0.68 A/W,带宽:>16 GHz,通道数:13
      2017 Germany 波导型PD[115] 带宽:80 GHz,响应度:0.5 A/W
      2017 Germany 波导型平衡PD[116] 带宽:115 GHz,响应度:0.25 A/W
      2018 UK 开关阵列[10] 规模:4×4,串扰:–47 dB
      Si 2004 USA 调制器[29] 带宽:1 GHz,调制效率:8 V·cm,插损:15.3 dB,静态消光比:16 dB
      2005 USA 拉曼激光器[23] 波长:1.67 μm,线宽:80 MHz,边模抑制比:55 dB
      2007 USA 调制器[30] 带宽:30 GHz,速率:40 Gbit/s,动态消光比:1.1 dB
      2007 USA GeSi探测器[36] 带宽:31 GHz,响应度:0.89 A/W,暗电流:169 nA
      2009 USA GeSi探测器[37] 带宽:36.8 GHz,响应度:1.1 A/W
      2011 China 延时线[47] 延时量:–15~85 ps
      2012 USA GeSi激光器[26] 波长:1520~1700 nm,线宽:<1.2 nm,输出功率:>1 mW
      2012 UK 调制器[31] 消光比:3.1 dB,调制效率:2.8 V·cm,带宽:20 GHz
      2012 China 调制器[32] 消光比:3.9 dB@40 Gbit/s,调制效率:2.6 V·cm
      2012 China 延时线[48] 延时量:270 ps, FWHM=2.1 GHz
      2013 Australia 微波带阻滤波器[50] FWHM=247~840 MHz,抑制比:60 dB,中心频率范围:2~8 GHz
      2013 Singapore 调制器[33] 消光比:5.56 dB,调制效率:26.7 V·mm,带宽:25.6 GHz
      2013 China 微波带阻滤波器[44] 10 dB带宽:1.85~4.55 GHz,中心频率调谐范围:7~34 GHz
      2013 The Netherlands 波束形成网络[52] 规模:1×4,最大延时:236 ps,工作频率:10.70~12.75 GHz
      2016 China 开关阵列[45] 规模:16×16,串扰:–30 dB,开关时间:22 μm,插损:5.2 dB
      2017 Japan 调制器[34] 带宽:17 GHz,调制效率:0.8~1.86 V·cm
      2017 Canada 集成微波带通滤波器[42] FWHM=2.3 GHz,抑制比:17 dB,中心频率调谐范围:7~25 GHz
      2017 USA 波束形成网络[53] 规模:1×4,带宽:6 GHz,最大延时:209 ps
      2018 China 调制器[35] 带宽:60 GHz,速率:100 Gbit/s,调制效率1.4 V·cm,插损:5.4 dB
      2018 China GeSi探测器[40] 带宽:25 GHz,响应度:0.88 A/W
      2018 Canada 集成OEO[41] 相噪:–80 dBc/Hz,频率:2~8 GHz
      2018 China 微波带通滤波器[43] FWHM=170 MHz,抑制比:26.5 dB,中心频率调谐范围:2.0~18.4 GHz
      2018 USA 真延时[51] 损耗:0.89 dB/ns,延时量调谐范围:0~3.4 ns,带宽:10 GHz@500 ps
      LiNbO3 1998 Israel 调制器[117] 带宽:40 GHz,半波电压:4.2 V
      2007 Switzerland 可调谐谐振腔[118] R=100 μm, Q=4×103,清晰度F=5
      2009 USA 调制器[65] 带宽:~100 GHz,半波电压:7 V,插损:3.7 dB
      2010 China 1×2 Y分支光开关[119] 串扰:–30 dB
      Polymer 1997 USA 调制器[81] 带宽:113 GHz
      2002 USA 环形滤波器、调制器[76] Q=1.3×105,谐振调谐效率:0.82 GHz/V
      2015 China 开关阵列[120] 规模:1×32
      2016 China 调制器[121] 电光系数:50 pm/V,半波电压:1.94 V
      SPP 2010 Denmark 热光开关[122] 器件长度:<100 μm
      2015 Switzerland 天线+调制器 工作频率:60 GHz,转换效率:–25 dB
      2017 Switzerland 调制器[83] 器件长度:几十μm,带宽:>70 GHz
      2018 Switzerland 环形调制器[123] R=1 μm, Q=30, FSR≈115 nm
      Graphe 2011 USA 调制器[68] 光带宽:1.35~1.6 μm
      2013 Turkey 调制器[124] 光带宽:450 nm~2 μm
      2015 UK 调制器[125] 调制深度:>0.03 dB/μm
      Si-InP 2016 Belgium 激光器[90] 波长:1566 nm,边模抑制比:45 dB,波导输出光功率:6 mW,直调带宽:15 GHz
      2016 USA 探测器[126] 响应度:0.64 A/W,输出功率:12 dBm@40 GHz,带宽:48 GHz
      2016 The Netherlands 波导型探测器 带宽:67 GHz,响应度:0.7 A/W
      2017 Japan 调制器[92] 带宽:2.2 GHz,调制效率:0.09 V·cm,消光比:3.1 dB@32 Gbit/s
      2018 Belgium 外调制激光器[127] 波长:1567 nm,边模抑制比:40 dB,波导输出光功率:3 mW,带宽:20 GHz,静态消光比:15 dB
      Si-LiNbO3 2014 USA 环形调制器[128] 带宽:5 GHz, Q值:14000,谐振调谐效率:3.3 pm/V
      2016 USA 调制器[67] 带宽:>8 GHz,半波电压:2.5 V,消光比:13.8 dB
      2016 USA 调制器[96] 带宽:~40 GHz
      2018 USA 调制器[97] 带宽:100 GHz,半波电压:5 V,消光比:~30 dB
      2019 China 调制器[98] 带宽:>70 GHz,半波电压:<7.4 V,消光比:~40 dB,插损:2.5 dB
      2019 USA 电光可调谐光频梳[129] 调谐范围:10~100 MHz

      表 1  报道的一些集成光子器件及性能

      Table 1.  Some reported integrated photonic devices and their performances

    • 光电混合集成是微波光子器件芯片发展的最终目标,目前实现这一目标的常见方案是基于引线互连的光电集成和光电单片集成。

      基于引线互连的光电混合集成是最容易实现的一种,即直接采用金丝引线将光芯片与电路芯片的电极互连。2017年,日本研究人员[130]将InP光子芯片与跨阻放大电路芯片通过引线互连方式实现了光电混合集成光接收器芯片及模块,如图17所示,带宽可达40 GHz。2016年德国研究人员[131,132]实现了InP周期分段型IQ电光调制器与驱动电路芯片的引线互连,信号传输距离可超过80 km,如图18所示。

      图  17  基于引线互连的光电混合集成接收器芯片及模块[130]

      Figure 17.  Hybrid optoelectronic integrated receiver chip and module based on wire bonding[130]

      图  18  InP基周期分段型IQ电光调制器与驱动电路芯片的引线互连[132]

      Figure 18.  Hybrid optoelectronic integrated between the InP-based IQ modulator and the driver circuit based on wire bonding[132]

      光电单片集成是将光芯片与电芯片集成到同一片上的技术,目前主要包括同片集成和异质异构集成2种。同片集成采用同一材料体系,在一个晶片上同时加工出光器件与电器件[133,134]图19是Ge-Si光电探测器与Si基TIA电路的单片集成。图20是InP/InGaAs HBT和InP基光电探测器单片集成实现OEMMIC的方案。异质异构集成是通过键合和垂直互连技术将光子芯片和电路芯片堆叠集成到一起的技术,两个芯片的材料体系可以相同也可以不同,材料选择更加灵活,更能发挥每种材料本身的优势。图21为InP基光子芯片和基于CMOS工艺的Si基电路芯片通过堆叠实现光电异质异构集成的结构示意图[135]

      图  19  Si基光电单片集成[133]

      Figure 19.  Si-based optoelectronic monolithic integration[133]

      图  20  InP基光电单片集成[134]

      Figure 20.  InP-based optoelectronic monolithic integration[134]

      图  21  InP-Si光电异质集成[135]

      Figure 21.  InP-Si hybrid optoelectronic integration[135]

      随着微波光子雷达发展需求的不断提升,光电集成化、芯片化已成为微波光子雷达器件的发展趋势和迫切需求,包括光电集成收发前端芯片、光电集成振荡器芯片、光电集成混频器芯片、光电集成波束形成芯片等。例如:2014年,Pascual Munoz等人[6]就提出了集成微波光子收发前端的构想,如图22所示。该芯片主要包含:激光光源(a)、可重构光信号调谐系统(b)、电光调制器(c)、光耦合器(d)和(f)、可重构光滤波器(e)、光电探测器(g)、RF放大器(h)、滤波器(i)、RF开关(j)、RF输入端/输出端口和光输入/输出端口等器件结构。该构想为集成微波光子收发前端的发展提供了框架。为了实现微波光子雷达器件芯片集成化目标,光电异质异构混合集成是一种有效的技术途径,将对高性能、多功能微波光子雷达器件的研制起到重要推动作用。

      图  22  多功能集成微波光子收发前端芯片概念框架[6]

      Figure 22.  Conceptual structure of multifunctional integrated microwave photonic transceiver chip[6]

    • 微波光子技术是解决目前微波雷达装备中诸多电子瓶颈问题的颠覆性技术,微波光子器件是推动微波光子雷达发展的关键。目前,集成化、芯片化及多功能化已是微波光子雷达系统对各器件的迫切需求,集成芯片技术是解决该需求的核心技术。在光子集成方面,能够发挥各材料优越特性的异质光子集成将是未来发展趋势。在光电集成方面,近期采用引线互连方法更容易实现多功能、小型化光电集成微波光子功能模块,但从长远看,光电异质异构混合集成将是集成微波光子器件发展的必然趋势,将在未来高性能微波光子器件雷达研制中发挥重要作用。

参考文献 (135)

目录

    /

    返回文章
    返回