频控阵雷达空距频聚焦信号处理方法

陈小龙 陈宝欣 黄勇 薛永华 关键

陈小龙, 陈宝欣, 黄勇, 薛永华, 关键. 频控阵雷达空距频聚焦信号处理方法[J]. 雷达学报, 2018, 7(2): 183-193. doi: 10.12000/JR18018
引用本文: 陈小龙, 陈宝欣, 黄勇, 薛永华, 关键. 频控阵雷达空距频聚焦信号处理方法[J]. 雷达学报, 2018, 7(2): 183-193. doi: 10.12000/JR18018
Chen Xiaolong, Chen Baoxin, Huang Yong, Xue Yonghua, Guan Jian. Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF) Method[J]. Journal of Radars, 2018, 7(2): 183-193. doi: 10.12000/JR18018
Citation: Chen Xiaolong, Chen Baoxin, Huang Yong, Xue Yonghua, Guan Jian. Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF) Method[J]. Journal of Radars, 2018, 7(2): 183-193. doi: 10.12000/JR18018

频控阵雷达空距频聚焦信号处理方法

doi: 10.12000/JR18018
基金项目: 国家自然科学基金(61501487, U1633122,61471382,61531020),国防科技基金(2102024),山东省高校科研发展计划(J17KB139),泰山学者和中国科协青年人才托举工程(YESS20160115)专项经费
详细信息
    作者简介:

    陈小龙(1985–),男,山东烟台人,讲师,博士。研究领域包括雷达动目标检测、海杂波抑制、雷达信号精细化处理等。入选中国科协“青年人才托举工程”,中国电子学会青年科学家俱乐部成员,获中国电子学会优秀博士学位论文奖,第十九届中国专利优秀奖,中国电子学会科技进步三等奖。E-mail: cxlcxl1209@163.com

    陈宝欣(1990–),男,山东栖霞人,博士在读。主要研究方向包括阵列信号处理、雷达目标检测等。E-mail: b.x.chen@foxmail.com

    关键:关 键(1968–),男,辽宁锦州人,教授,博士生导师。主要研究方向包括雷达目标检测与跟踪、侦察图像处理和信息融合。获国家科技进步二等奖1项、军队科技进步一等奖2项,山东省技术发明一等奖1项;“百千万人才工程”国家级人选,入选教育部新世纪优秀人才支持计划。E-mail: guanjian_68@163.com

    通讯作者:

    陈小龙   cxlcxl1209@163.com

Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF) Method

Funds: The National Natural Science Foundation of China (61501487, U1633122, 61471382, 61531020), National Defense Science Foundation (2102024), Scientific Research Development of Shandong (J17KB139), Special Funds of Taishan Scholars of Shandong and Young Elite Scientist Sponsorship Program of CAST (YESS20160115)
  • 摘要: 针对复杂环境下对低可观测运动目标探测的迫切需求,该文在系统回顾近几年频控阵雷达国内外发展现状、频控阵雷达阵列结构设计及波束形成、距离和角度的联合估计等技术的基础上,提出了基于空距频聚焦的频控阵雷达信号新方法。充分利用频控阵雷达提供的发射波形自由度、阵元位置自由度、波束方位与距离相关性以及凝视观测的特点,即在空间(角度)、距离和频率(多普勒)的灵活自由度和能量集性,实现空-距-频聚焦和联合参数估计。仿真分析表明该方法具有提高复杂环境下雷达微弱动目标检测和参数估计的潜力,在杂波和干扰抑制、动目标精细化处理等方面有广阔的应用前景。

     

  • 图  1  机动目标雷达回波特性

    Figure  1.  Characteristics of maneuvering target’s returns

    图  2  频控阵雷达空-距-频聚焦信号处理流程架构

    Figure  2.  Signal processing flow of space-range-Doppler Focus method for FDA radar

    图  3  频控阵雷达的发射阵列示意图

    Figure  3.  Transmit array of FDA radar

    图  4  基于SRDF的频控阵雷达动目标检测和估计方法流程图

    Figure  4.  Flowchart of moving target detection and estimation based on SRDF for FDA radar

    图  5  噪声背景下匀速运动目标的频控阵雷达空间谱(SNR=0 dB)

    Figure  5.  Spatial spectrum of uniform motion targets in a noise background for FDA radar (SNR=0 dB)

    图  6  噪声背景下匀加速运动目标的频控阵雷达空间谱(SNR=0 dB)

    Figure  6.  Spatial spectrum of moving targets with constant acceleration in a noise background for FDA radar (SNR=0 dB)

    图  7  相同方位角,不同距离和多普勒的多目标频控阵雷达空间谱(θ12=0°, r1=2990 m, r2=3990 m, fd1=–0.26,fd2=0.19)

    Figure  7.  Spatial spectrum of multiple targets with the same azimuth, different range and Doppler (θ12=0°, r1=2990 m, r2=3990 m, fd1=–0.26,fd2=0.19)

    图  8  相同距离,不同方位角和多普勒的多目标频控阵雷达空间谱(r1=r2=2990 m, θ1=0°, θ2=29°, fd1=–0.26,fd2=0.19)

    Figure  8.  Spatial spectrum of multiple targets with the same range, different azimuth and Doppler (r1=r2=2990 m, θ1=0°, θ2=29°, fd1=–0.26,fd2=0.19)

  • [1] 陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19–27

    Chen Xiao-long, Guan Jian, Huang Yong, et al. Radar refined processing and its applications for low-observable moving target[J]. Science&Technology Review, 2017, 35(20): 19–27
    [2] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30–38

    Chen Xiao-long, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science&Technology Review, 2017, 35(11): 30–38
    [3] 许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3(2): 129–141. DOI: 10.3724/SP.J.1300.2014.14023

    Xu Jia, Peng Ying-ning, Xia Xiang-gen, et al. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Radars, 2014, 3(2): 129–141. DOI: 10.3724/SP.J.1300.2014.14023
    [4] Haimovich A M, Blum R S, and Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. DOI: 10.1109/MSP.2008.4408448
    [5] Antonik P, Wicks M C, Griffiths H D, et al.. Range dependent beamforming using element level waveform diversity[C]. Proceedings of Waveform Diversity and Design Conference, LasVegas, 2006.
    [6] Zhang Z and Kayama H. Dynamic space-frequency-division multiple-access over frequency-selective slow-fading channels[C]. Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 2006: 2119–2124.
    [7] Farooq J, Temple M A, and Saville M A. Application of frequency diverse arrays to synthetic aperture radar imaging[C]. Proceedings of 2007 International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 2007: 447–449.
    [8] Higgins T and Blunt S D. Analysis of range-angle coupled beamforming with frequency-diverse chirps[C]. Proceedings of 2009 International Waveform Diversity and Design Conference, Kissimmee, FL, USA, 2009: 140–144.
    [9] Huang J J. Frequency diversity array: Theory and design[D]. [Ph.D. dissertation], University College London, 2010.
    [10] Weber J, Oruklu E, and Saniie J. FPGA-based configurable frequency-diverse ultrasonic target-detection system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(3): 871–879. DOI: 10.1109/TIE.2009.2030214
    [11] Wang W Q. Phased-MIMO radar with frequency diversity for range-dependent beamforming[J]. IEEE Sensors Journal, 2013, 13(4): 1320–1328. DOI: 10.1109/JSEN.2012.2232909
    [12] Secmen M, Demir S, Hizal A, et al.. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. Proceedings of 2007 IEEE Radar Conference, Boston, MA, USA, 2007: 427–430.
    [13] Jones A M and Rigling B D. Frequency diverse array radarreceiver architectures[C]. Proceedings of 2012 InternationalWaveform Diversity & Design Conference, Kauai, HI, USA,2012: 211–217.
    [14] Basit A, Qureshi I M, Khan W, et al.. Cognitive frequency offset calculation for frequency diverse array radar[C]. Proceedings of the 2015 12th International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 2015: 641–645.
    [15] Khan W, Qureshi I M, Basit A, et al. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 885–888. DOI: 10.1109/LAWP.2015.2478964
    [16] Wang W Q, So H C, and Farina A. An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246. DOI: 10.1109/JSTSP.2016.2627182
    [17] So H C, Amin M G, Blunt S, et al. Introduction to the special issue on time/frequency modulated array signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 225–227. DOI: 10.1109/JSTSP.2017.2652098
    [18] Xu J W, Liao G S, Zhang Y H, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. DOI: 10.1109/JSTSP.2016.2615269
    [19] Qin S, Zhang Y D, Amin M G, et al. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 321–335. DOI: 10.1109/JSTSP.2016.2627184
    [20] Liu Y M, Ruan H, Wang L, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. DOI: 10.1109/JSTSP.2016.2627183
    [21] Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073–4081. DOI: 10.1109/TAP.2013.2260515
    [22] Wang W Q and So H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000–2011. DOI: 10.1109/TSP.2014.2305638
    [23] Xu Y H, Shi X W, Xu J W, et al. Range-angle-dependent beamforming of pulsed frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3262–3267. DOI: 10.1109/TAP.2015.2423698
    [24] Xu J W, Liao G S, Zhu S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. DOI: 10.1109/TSP.2015.2422680
    [25] Li Y. Dynamic waveform design for sensor systems with novel estimation of sensing environment characteristics[D]. Arizona State University, 2010.
    [26] Deng H and Himed B. Optimum waveform design and clutter rejection processing for MIMO radar[C]. Proceedings of the 2010 18th European Signal Processing Conference, Aalborg, Denmark, 2010: 1249–1251.
    [27] Friedlander B. Waveform design for MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1227–1238. DOI: 10.1109/TAES.2007.4383615
    [28] Naghibi T and Behnia F. MIMO radar waveform design in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 770–781. DOI: 10.1109/TAES.2011.5751224
    [29] Rabideau D J. MIMO radar aperture optimization[Z]. Lexington, Massachusetts: Lincoln Laboratory, 2011.
    [30] Bliss D W, Forsythe K W, and Richmond C D. MIMO radar: Joint array and waveform optimization[C]. Proceedings of 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2007: 207–211.
    [31] Xue Y H, Li X Y, and Sun Y L. Knowledge-aided target detection in sea clutter for distributed MIMO sky-wave radar[C]. Proceedings of IET International Radar Conference 2015, Hangzhou, China, 2015: 1–5.
    [32] 李秀友, 薛永华, 黄勇, 等. 基于不确定集的稳健MIMO雷达波形设计算法[J]. 电子与信息学报, 2016, 38(10): 2445–2452. DOI: 10.11999/JEIT151425

    Li Xiu-you, Xue Yong-hua, Huang Yong, et al. Robust MIMO radar waveform design algorithm based on uncertainty set[J]. Journal of Electronics&Information Technology, 2016, 38(10): 2445–2452. DOI: 10.11999/JEIT151425
    [33] 关键, 黄勇, 何友. 基于自适应脉冲压缩-Capon滤波器的MIMO阵列雷达CFAR检测器[J]. 中国科学: 信息科学, 2011, 54(11): 2411–2424

    Guan Jian, Huang Yong, and He You. A CFAR detector for MIMO array radar based on adaptive pulse compression-capon filter[J]. Science China Information Sciences, 2011, 54(11): 2411–2424
    [34] 关键, 黄勇, 何友. MIMO阵列雷达检测器的性能分析[J]. 电子学报, 2010, 38(9): 2107–2111

    Guan Jian, Huang Yong, and He You. Performance analysis of the detector for MIMO array radar[J]. Acta Electronica Sinica, 2010, 38(9): 2107–2111
    [35] 关键, 黄勇. Gauss色噪声中MIMO分布孔径雷达检测性能分析[J]. 中国科学 F辑: 信息科学, 2009, 52(9): 1688–1696

    Guan Jian and Huang Yong. Detection performance analysis for MIMO radar with distributed apertures in Gaussian colored noise[J]. Science in China Series F-Information Sciences, 2009, 52(9): 1688–1696
    [36] Xu J, Zhou X, Qian L C, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. DOI: 10.1109/TAES.2016.150076
    [37] Huang P H, Liao G S, Yang Z W, et al. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4013–4026. DOI: 10.1109/TSP.2016.2558161
    [38] Chen X L, Guan J, Liu N B, et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. DOI: 10.1109/TSP.2013.2297682
    [39] Chen X L, Guan J, Huang Y, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. DOI: 10.1109/TGRS.2014.2358456
    [40] Chen X L, Guan J, Liu N B, et al. Detection of a low observable sea-surface target with micromotion via the radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1225–1229. DOI: 10.1109/LGRS.2013.2290024
    [41] Chen X L, Huang Y, Liu N B, et al. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815–833. DOI: 10.1109/TAES.2014.130791
    [42] Xu J, Yu J, Peng Y N, et al. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. DOI: 10.1109/TAES.2011.5751251
    [43] Li X L, Cui G L, Kong L J, et al. Fast non-searching method for maneuvering target detection and motion parameters estimation[J]. IEEE Transactions on Signal Processing, 2016, 64(9): 2232–2244. DOI: 10.1109/TSP.2016.2515066
    [44] Zheng J B, Su T, Zhu W T, et al. ISAR imaging of nonuniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4727–4740. DOI: 10.1109/TGRS.2015.2408350
    [45] Wang H W, Fan X Y, Chen Y, et al. Wigner-Hough transform based on slice's entropy and its application to multi-LFM signal detection[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 634–642.
    [46] Yang L S, Zhang Z J, and Guo F Y. Fast algorithm for Radon-ambiguity transform[J]. IET Radar,Sonar&Navigation, 2016, 10(3): 553–559. DOI: 10.1049/iet-rsn.2015.0297
    [47] Wang Y, Zhao B, and Jiang Y C. Inverse synthetic aperture radar imaging of targets with complex motion based on cubic Chirplet decomposition[J]. IET Signal Processing, 2015, 9(5): 419–429. DOI: 10.1049/iet-spr.2014.0086
    [48] Tao R, Li Y L, and Wang Y. Short-time fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2568–2580. DOI: 10.1109/TSP.2009.2028095
    [49] Chen X L, Wang G Q, Dong Y L, et al. Sea clutter suppression and micromotion marine target detection via Radon-linear canonical ambiguity function[J]. IET Radar,Sonar&Navigation, 2015, 9(6): 622–631. DOI: 10.1049/iet-rsn.2014.0318
    [50] Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and Radon-Lv’s distribution[J]. IET Radar,Sonar&Navigation, 2015, 9(9): 1284–1295. DOI: 10.1049/iet-rsn.2015.0100
    [51] Sammartino P F and Baker C J. The frequency diverse bistatic system[C]. Proceedings of 2009 International Waveform Diversity and Design Conference, Kissimmee, FL, USA, 2009: 155–159. DOI: 10.1109/WDDC.2009.4800336.
    [52] Khan W, Qureshi I M, and Saeed S. Frequency diverse array radar with logarithmically increasing frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 499–502. DOI: 10.1109/LAWP.2014.2368977
    [53] Chen H and Shao H Z. Sparse reconstruction based target localization with frequency diverse array MIMO radar[C]. Proceedings of 2015 IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, China, 2015: 94–98.
    [54] Gao K D, Shao H Z, Chen H, et al. Impact of frequency increment errors on frequency diverse array MIMO in adaptive beamforming and target localization[J]. Digital Signal Processing, 2015, 44: 58–67. DOI: 10.1016/j.dsp.2015.05.005
    [55] Chen B X, Chen X L, Huang Y, et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 98–101. DOI: 10.1109/LAWP.2017.2776957
    [56] Wang W Q and Shao H Z. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 106–114. DOI: 10.1109/JSTSP.4200690
    [57] Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057–3067. DOI: 10.1109/TAES.2014.120804
    [58] Xiong J, Wang W Q, and Gao K D. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. DOI: 10.1109/TAES.2017.2756498
    [59] Li J J, Li H B, and Ouyang S. Identifying unambiguous frequency pattern for target localisation using frequency diverse array[J]. Electronics Letters, 2017, 53(19): 1331–1333. DOI: 10.1049/el.2017.2355
    [60] Gui R H, Wang W Q, Pan Y, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. DOI: 10.1109/JSTSP.2018.2793761
    [61] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. DOI: 10.12000/JR16110

    Chen Xiao-long, Guan Jian, He You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. DOI: 10.12000/JR16110
    [62] 陈小龙, 关键, 于晓涵, 等. 雷达动目标短时稀疏分数阶傅里叶变换域检测方法[J]. 电子学报, 2017, 45(12): 3030–3036

    Chen Xiao-long, Guan Jian, Yu Xiao-han, et al. Radar detection for moving target in short-time sparse fractional Fourier transform domain[J]. Acta Electronica Sinica, 2017, 45(12): 3030–3036
    [63] Liu S S, Shan T, Tao R, et al. Sparse discrete fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6582–6595. DOI: 10.1109/TSP.2014.2366719
    [64] 刘永军, 廖桂生, 杨志伟, 等. 一种超分辨OFDM雷达通信一体化设计方法[J]. 电子与信息学报, 2016, 38(2): 425–433. DOI: 10.11999/JEIT150320

    Liu Yong-jun, Liao Gui-sheng, Yang Zhi-wei, et al. A super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics&Information Technology, 2016, 38(2): 425–433. DOI: 10.11999/JEIT150320
  • 加载中
图(8)
计量
  • 文章访问数:  1752
  • HTML全文浏览量:  568
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-01
  • 修回日期:  2018-04-13
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回