无人机载合成孔径雷达系统技术与应用

王岩飞 刘畅 詹学丽 韩松

引用本文:
Citation:

无人机载合成孔径雷达系统技术与应用

    作者简介: 王岩飞(1963–),男,中国科学院电子学研究所研究员,博士生导师,主要研究方向为微波成像雷达系统及其理论、 数字信号处理等。刘畅(1978–),男,中国科学院电子学研究所研究员,主要研究方向为SAR系统及其相关SAR成像处理技术等。詹学丽(1976–),女,中国科学院电子学研究所副研究员,主要研究方向为SAR系统仿真及SAR成像理论等。韩松(1971–),男,中国科学院电子学研究所研究员,主要研究方向为微波成像理论及系统技术、实时信息处理技术、实时信号仿真技术。.
    通讯作者: 王岩飞, yfwang@mail.ie.ac.cn
  • 基金项目:

    国家自然科学基金 (61471340)

Technology and Applications of UAV Synthetic Aperture Radar System

    Corresponding author: Wang Yanfei, yfwang@mail.ie.ac.cn ;
  • Fund Project: The National Natural Science Foundation of China (61471340)

  • 摘要: 该文在概述无人机载SAR技术特点的基础上,介绍了国内外无人机载SAR技术的发展概况,对无人机载 SAR的工作体制、关键技术、性能指标、典型系统及应用等方面的内容进行了归纳。结合研制的高分辨率、全极化、双天线干涉等SAR系统,重点讨论了基于功能单元的SAR系统设计、SAR实时成像数据处理、多维度运动误差补偿等技术。针对无人机的特点和对载荷的要求,概述了无人机载SAR在高分辨率、新功能模式等方面的技术进展。并针对国内外当前的发展概况,探讨了无人机载SAR技术的发展趋势。
  • [1] Zaloga J, Rockwell D, and Finnegan P. World Unmanned Aerial Vehicle Systems Market Profile and Forecast[R]. Philip Finnegan, 2012.
    [2] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505513. DOI: 10.13203/ j.whugis20140045. Li Deren and Li Ming. Research advace and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505513. DOI: 10.13203/j. whugis20140045.
    [3] Global Hawk Specifications[OL]. www.northropgrumman. com/Capabilities/GlobalHawk/Pages/default.aspx.2016.8.
    [4] Raytheon updates HISAR[OL]. https://www.flightglobal. com/news/articles/raytheon-updates-hisar-132426/.2016.8.
    [5] AN/ZPY-2 Multi-Platform Radar Technology Insertion Program (MP-RTIP)[OL]. www.northropgrumman.com/ Capabilities/mprtip.2016.8.
    [6] AN/ZPY-3 Multi-Function Active Sensor (MFAS)[OL]. www.northropgrumman.com/Capabilities/MFAS/Pages/ default.aspx.2016.8.
    [7] Predator_B persistent multi-mission ISR[OL]. www.ga-asi.com/Websites/gaasi/images/products/aircraft_systems/pdf/ Predator_B021915.pdf.2016.8.
    [8] Hensley W H, Doerry A W, and Walker B C. Lynx: a high-resolution synthetic aperture radar[J]. SPIE Aerosense, 1999, 3704: 5158. DOI: 10.1117/12.354602.
    [9] GA-ASI first two-channel Lynx radar demonstrates improved GMTI performance under Darpa dual beam project[OL]. www.ga.com/ga-asi-first-two-channel-lynx-radar- demonstrates-improved-gmti-performance-under-darpa-dual-beam-project.pdf.2016.8.
    [10] RDR-1700B radar series[OL]. https://www.telephonics.com/ soft-gate/gated-assets/uploads/39962-TC-RDR-1700B-Brochure- WEB.pdf.2016.8.
    [11] MiniSAR[OL]. http//www.sandia.gov/radar/images/ SAND2005-3445PMiniSAR-fact-sheetp2-v4-redo.pdf.2014.8.
    [12] Kinghorn A M and Nejman A. PicoSARan advanced lightweight SAR system[C]. European Radar Conference (EuRAD), Italy, 2009: 168171.
    [13] Goulding M M, Stonehouse A, and Nejman A. AESA based dual channel GMTI: mode design flight trials[C]. IEEE Radar Conference (RADAR), Kansas City, 2011: 917921. DOI: 10.1109/RADAR.2011.5960670.
    [14] Knapskog A O. Moving targets and multipath in SAR images of harbour scenes[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 547550.
    [15] Halcrow G, Greig D W, Glass A, et al.. PicoSAR trials results[C]. 2013 14th International Radar Symposium (IRS), Dresden, 2013, 1: 4752.
    [16] I-Master GMTI/SAR radar[OL]. https://www.thalesgroup. com/sites/default/files/asset/document/I-Master%20 Datasheet.pdf.2016.8.
    [17] 王岩飞, 刘畅, 李和平, 等. 基于多通道合成的优于0.1 m分辨率的机载SAR系统[J]. 电子与信息学报, 2013, 35(1): 2935. Wang Yanfei, Liu Chang, Li Heping, et al.. An airborne SAR with 0.1 m resolution using multi-channel synthetic bandwidth[J]. Journal of Electronics Information Technology, 2013, 35(1): 2935.
    [18] 贾颖新, 王岩飞. 一种宽带多通道合成孔径雷达系统幅相特性测量与校正方法[J]. 电子与信息学报, 2013, 35(9): 21682174. Jia Yingxin and Wang Yanfei. Measurement and calibration of amplitude-phase errors in wideband multi-channel SAR[J]. Journal of Electronics Information Technology, 2013, 35(9): 21682174.
    [19] Hu Jianmin, Wang Yanfei, and Li Heping. Channel phase error estimation and compensation for ultra high-resolution airborne SAR system based on echo data[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 10691073. DOI: 10.1109/LGRS.2012.2190133.
    [20] 张梅, 刘畅, 王岩飞. 频带合成超高分辨率机载SAR系统的相位误差校正[J]. 电子与信息学报, 2011, 33(12): 28132818. Zhang Mei, Liu Chang, and Wang Yanfei. Channel error correction for ultra-high resolution airborne SAR system with synthetic bandwidth[J]. Journal of Electronics Information Technology, 2011, 33(12): 28132818.
    [21] 王岩飞, 刘畅, 詹学丽, 等. 一个高精度无人机载多功能SAR系统[J]. 电子与信息学报, 2013, 35(7): 15691574. Wang Yanfei, Liu Chang, Zhan Xueli, et al.. An ultrafine multifunctional unmanned aerial vehicle SAR system[J]. Journal of Electronics Information Technology, 2013, 35(7): 15691574.
    [22] 高许岗, 雍延梅. 无人机载微型SAR系统设计与实现[J]. 雷达科学与技术, 2014, 12(1): 3538. Gao Xugang and Yong Yanmei. Design and realization of UAV high resolution miniature SAR[J]. Radar Science and Technology, 2014, 12(1): 3538.
    [23] Mo Shasha, Wang Yanfei, and Liu Chang. An estimation algorithm for phase errors in synthetic aperture radar imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 18181822. DOI: 10.1109/LGRS.2015.2429744.
    [24] Fan Bangkui, Ding Zegang, Gao Wenbin, et al.. An improved motion compensation method for high resolution UAV SAR imaging[J]. Science China Information Sciences, 2014, 57(12): 113.
    [25] Li Yake, Liu Chang, Wang Yanfei, et al.. A robust motion error estimation method based on raw SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 27802790. DOI: 10.1109/TGRS.2011.2175737.
    [26] Edwards M, Provo U T, Madsen D, et al.. microASAR: a small, robust LFM-CW SAR for operation on UAVs and small aircraft[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008: 514517. DOI: 10.1109/IGARSS.2008.4780142.
    [27] Edrich M and Weiss M. Second-generation Ka-band UAV SAR system[C]. European Radar Conference (EuRAD), Amsterdam, 2008: 479482. DOI: 10.1109/EUMC.2008. 4751786.
    [28] Otten M, van Rossum W, van der Graaf M, et al.. Multichannel imaging with the AMBER FMCW SAR[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 209212.
    [29] Rossum W, Otten M, and van Dorp P. Multichannel FMCW SAR[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 279282.
    [30] Samczyski P, Kulpa K, Malanowski M, et al.. SARENKA: C-band SAR radar for UAV application[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 12871290.
    [31] Wielgo M, Samczynski P, Malanowski M, et al.. The SARENKA SAR system-experimental results of ISAR imaging[C]. International Radar Symposium (IRS), Gdansk, 2014: 14. DOI: 10.1109/IRS.2014.6869263.
    [32] Gromek D, Samczynski P, Kulpa K, et al.. C-band SAR radar trials using UAV platform: experimental results of SAR system integration on a UAV carrier[C]. International Radar Symposium (IRS), Cracow, 2016: 15. DOI: 10.1109/ IRS.2016.7497305.
    [33] Jones C, Minchew B, and Holt B. Polarimetric decomposition analysis of the deepwater horizonoil slick using L-ban UAVSAR data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 2011: 22782281. DOI: 10.1109/IGARSS.2011.6049663.
    [34] Lee J, Strovers B, and Lin V. C-20A/GIII precision autopilot development in support of NASAs UAVSAR program[OL]. https://esto.nasa.gov/conferences/nstc2007/ papers/Lee_James_B4P3_NSTC-07-0013.pdf.2016.8.
    [35] Fore G, Chapman D, Hawkins P, et al.. UAVSAR polarimetric calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 34813491. DOI: 10.1109/TGRS.2014.2377637.
    [36] Kim D, Hensley S, and Yun S. Robust change detection in urban area using multi-temporal polarimetric UAVSAR data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 28012804. DOI: 10.1109/IGARSS.2015.7326396.
    [37] Acevo R, Aguasca A, Mallorqui J J, et al.. High-compacted FM-CW SAR for boarding on small UAVs[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009: 543546. DOI: 10.1109/IGARSS.2009. 5418139.
    [38] Cuerda J M, Gonz lez, M J, Gmez M, et al.. INTAs developments for UAS and small platforms: QUASAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009: 9991002. DOI: 10.1109/IGARSS.2009.5417548.
    [39] del Castillo Mena, Sanchez Sevilleja J, Larraaga Sudupe S, et al.. RF design for QUASAR Ku-band polarimetric SAR system[C]. European Radar Conference (EuRAD), Paris, 2010: 459462.
    [40] Remy A, de Macedo A C, and Moreira R. The first UAV-based P-band X-band interferometric SAR system[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012: 50415044. DOI: 10.1109/ IGARSS.2012.6352478.
    [41] Shiroma G, de Macedo K A C, Wimmer C, et al.. The dual-band PolInSAR method for forest parametrization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 31893201. DOI: 10.1109/ JSTARS.2016.2520900.
    [42] Alberti G, Citarella L, Ciofaniello L, et al.. Current status of the development of an Italian airborne SAR system (MINISAR)[J]. SPIE, 2004, 5236: 5359. DOI: 10.1117/12.512224.
    [43] Essen H, Brutigam M, Sommer R, et al.. SUMATRA-A UAV based miniaturized SAR system[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 437440.
    [44] Caris M, Stanko S, Sommer R, et al.. SARapesynthetic aperture radar for all weather penetrating UAV application[C]. International Radar Symposium (IRS), Dresden, 2013, 1: 4146.
    [45] Klare J, Wei M, Brenner A, et al.. ARTINO: A new high resolution 3D imagingradar system on an autonomous airborne platform[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006: 38423845. DOI: 10.1109/IGARSS.2006.985.
    [46] Klare J, Cerutti D, Brenner A, et al.. Image quality analysis of the vibratingsparse MIMO antenna array of the airborne 3D imaging radar ARTINO[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007: 53105314. DOI: 10.1109/IGARSS.2007.4424061.
    [47] Weiss M and Gilles M. Initial ARTINO radar experiments[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2010: 14.
    [48] Weiss M, Peters O, and Ender J. First flight trials with ARTINO[C]. European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008: 14.
    [49] Nouvel F, Jeuland H, Bonin G, et al.. A Ka-band imaging radar: DRIVE on board ONERA Motorglider[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006: 134136. DOI: 10.1109/ IGARSS.2006.39.
    [50] Nouvel F, Roques S, and Plessis O. A low-cost imaging radar: DRIVE on board ONERA motor glider[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007: 53065309. DOI: 10.1109/IGARSS.2007.4424060.
    [51] Nouvel F, Dubois-Fernandez P, and Dupuis X. The Ka SAR airborne compaign[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Australia, 2013: 44714474. DOI: 10.1109/IGARSS.2013.6723828.
    [52] Nouvel F and Plessis O. The ONERA compact SAR in Ka band[C]. European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008: 14.
    [53] Sumantyo S, Chet K V, and Triharjanto R. Development of circularly polarized synthetic aperture radar onboard unmanned aerial vehicle (CP-SAR UAV)[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Australia, 2013: 23012304. DOI: 10.1109/IGARSS. 2013.6723278.
    [54] Sumantyo S. Progress on development of synthetic aperture radar onboard UAV and microsatellite[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Qubec, 2014: 10811084. DOI: 10.1109/IGARSS.2014. 6946616.
    [55] Rodriguez-Cassola M, Younis M, Krieger G, et al.. Spaceborne to UAV bistatic radar system for high-resolution imaging and autonomous navigation[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2010: 740743.
  • [1] 章鹏飞李刚霍超颖殷红成 . 基于双雷达微动特征融合的无人机分类识别. 雷达学报, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [2] 刘玉琪易建新万显荣程丰饶云华龚子平 . 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究. 雷达学报, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [3] 白杨吴洋殷红成阙肖峰 . 无人机极化散射特性室内测量研究. 雷达学报, 2016, 5(6): 647-657. doi: 10.12000/JR16032
    [4] 朱敏慧 . SAR 的海洋动力探测研究及应用浅析. 雷达学报, 2012, 1(4): 342-352. doi: 10.3724/SP.J.1300.2012.20088
    [5] 邓云凯赵凤军王宇 . 星载SAR技术的发展趋势及应用浅析. 雷达学报, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015
    [6] 罗绣莲徐伟郭磊 . 捷变PRF技术在斜视聚束SAR中的应用. 雷达学报, 2015, 4(1): 70-77. doi: 10.12000/JR14149
    [7] 丁振宇谭维贤王彦平洪文吴一戎 . 基于波数域子孔径的机载三维SAR偏航角运动误差补偿. 雷达学报, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [8] 杨震杨汝良 . HJ-1-C 卫星SAR 系统的内定标. 雷达学报, 2014, 3(3): 314-319. doi: 10.3724/SP.J.1300.2014.14028
    [9] 詹学丽王岩飞王超刘碧丹 . 一种基于脉冲压缩的机载条带SAR重叠子孔径实时成像算法. 雷达学报, 2015, 4(2): 199-208. doi: 10.12000/JR14126
    [10] 李学仕孙光才邵鹏吴玉峰邢孟道 . 基于数字阵列雷达的同时多模式SAR 成像体制研究. 雷达学报, 2014, 3(4): 480-489. doi: 10.3724/SP.J.1300.2014.13113
    [11] 李景山温双燕王建仲利华张问一 . 基于高性能机群的环境一号C 卫星SAR 图像全分辨率快视实时处理系统设计与实现. 雷达学报, 2014, 3(3): 332-338. doi: 10.3724/SP.J.1300.2014.13095
    [12] 贾丽贾鑫许小剑何永华 . 机场场景SAR原始数据模拟. 雷达学报, 2014, 3(5): 565-573. doi: 10.3724/SP.J.1300.2014.14071
    [13] 周辉赵凤军禹卫东杨健 . 基于非理想运动误差补偿的SAR地面运动目标成像(英文). 雷达学报, 2015, 4(3): 265-275. doi: 10.12000/JR15024
    [14] 折小强仇晓兰韩冰雷斌 . 一种基于变换域的滑动聚束SAR 调频率估计方法. 雷达学报, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [15] 胡克彬张晓玲师君韦顺军 . 基于图像强度最优的SAR高精度运动补偿方法. 雷达学报, 2015, 4(1): 60-69. doi: 10.12000/JR15007
    [16] 郭振宇林赟洪文 . 一种基于图像域相位误差估计的圆迹SAR聚焦算法. 雷达学报, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [17] 王肖洋高贵周石琳邹焕新 . 一种基于双通道DPCA 的SAR-GMTI 杂波抑制方法. 雷达学报, 2014, 3(2): 241-248. doi: 10.3724/SP.J.1300.2014.13121
    [18] 张红敏靳国旺徐青李向英 . 利用单个地面控制点的SAR 图像高精度立体定位. 雷达学报, 2014, 3(1): 85-91. doi: 10.3724/SP.J.1300.2014.13138
    [19] 秦记东赖涛赵拥军黄洁白冰 . 基于通道误差校准的空域导向矢量多通道SAR-GMTI 杂波抑制方法. 雷达学报, 2014, 3(1): 70-77. doi: 10.3724/SP.J.1300.2014.130118
    [20] 汪丙南向茂生 . 地球同步轨道圆迹SAR 三维分辨特性分析. 雷达学报, 2012, 1(3): 314-322. doi: 10.3724/SP.J.1300.2012.20044
  • 加载中
计量
  • 文章访问数:  1493
  • HTML浏览量:  923
  • PDF下载量:  1502
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-05
  • 录用日期:  2016-08-16
  • 刊出日期:  2016-08-28

无人机载合成孔径雷达系统技术与应用

    通讯作者: 王岩飞, yfwang@mail.ie.ac.cn
    作者简介: 王岩飞(1963–),男,中国科学院电子学研究所研究员,博士生导师,主要研究方向为微波成像雷达系统及其理论、 数字信号处理等。刘畅(1978–),男,中国科学院电子学研究所研究员,主要研究方向为SAR系统及其相关SAR成像处理技术等。詹学丽(1976–),女,中国科学院电子学研究所副研究员,主要研究方向为SAR系统仿真及SAR成像理论等。韩松(1971–),男,中国科学院电子学研究所研究员,主要研究方向为微波成像理论及系统技术、实时信息处理技术、实时信号仿真技术。
  • 1. (中国科学院电子学研究所 北京 100190)
基金项目:  国家自然科学基金 (61471340)

摘要: 该文在概述无人机载SAR技术特点的基础上,介绍了国内外无人机载SAR技术的发展概况,对无人机载 SAR的工作体制、关键技术、性能指标、典型系统及应用等方面的内容进行了归纳。结合研制的高分辨率、全极化、双天线干涉等SAR系统,重点讨论了基于功能单元的SAR系统设计、SAR实时成像数据处理、多维度运动误差补偿等技术。针对无人机的特点和对载荷的要求,概述了无人机载SAR在高分辨率、新功能模式等方面的技术进展。并针对国内外当前的发展概况,探讨了无人机载SAR技术的发展趋势。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回