海杂波特性认知研究进展与展望

丁昊 董云龙 刘宁波 王国庆 关键

引用本文:
Citation:

海杂波特性认知研究进展与展望

    作者简介: 丁昊(1988-),男,博士研究生,主要研究方向为海杂波特性认知、雷达目标检测等。E-mail:hao3431@tom.com;关键(1968-),男,教授,博士生导师,获全国优秀博士学位论文奖,新世纪百千万人才工程国家级人选。主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合。E-mail:guanjian96@tsinghua.org.cn.
    通讯作者: 丁昊, hao3431@tom.com ; 关键, hao3431@tom.com
  • 基金项目:

    国家自然科学基金(61179017,61201445,61401495)

Overview and Prospects of Research on Sea Clutter Property Cognition

    Corresponding author: Ding Hao, hao3431@tom.com ;Guan Jian, hao3431@tom.com
  • Fund Project: The National Natural Science Foundation of China (61179017, 61201445, 61401495)

  • 摘要: 海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。
  • [1] Ward K and Watts S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2):146-157.
    [2] Ward K, Tough R, and Watts S. Sea Clutter:Scattering, the K-distribution and Radar Performance, 2nd ed[M]. London:The Institution of Engineering and Technology, 2013.
    [3] Long M W. Radar Reflectivity of Land and Sea, 3nd ed[M]. London:Artech House radar library, 2001.
    [4] Skolnik M I. Radar Handbook, 3nd ed[M]. New York:The McGraw-Hill Companies Inc., 2008.
    [5] Gini F, Farina A, and Greco M. Selected list of references on radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1):329-359.
    [6] Daley J C, Ransone J T, Burkett J A, et al.. Sea clutter measurements on four frequencies[R]. Naval Research Laboratory Report 6806, November 1968.
    [7] Titi G W and Marshall D F. The ARPA/Navy Mountaintop program:adaptive signal processing for airborne early warning radar[C]. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996:1165-1168.
    [8] Little M O and Berry W P. Real-time multichannel airborne radar measurements[C]. IEEE National Radar Conference, 1997:138-142.
    [9] Charles L R, Eckert E, Siegel A, et al.. X-band low-grazing-angle ocean backscatter obtained during LOGAN 1993[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1):18-26.
    [10] Drosopoulos A. Description of the OHGR database[R]. Defence Research Establishment Ottawa, Technical Note 94-14, 1994.
    [11] Wind H J De, Cilliers J C, and Herselman P L. Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 32(2):145-148.
    [12] Hair T, Lee T, and Baker C J. Statistical properties of multifrequency high-range-resolution sea reflections[J]. IEE Proceedings-F, 1991, 138(2):75-79.
    [13] Carretero-Moya J, Gismero-Menoyo J, Blanco-del-Campo A, et al.. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2024-2037.
    [14] Antipov I. Simulation of sea clutter returns[R]. Technical Report, DSTO-TR-0679, 1998.
    [15] Antipov I. Analysis of sea clutter data[R]. Technical Report, DSTO-TR-0647, 1998.
    [16] Choong P L. Modelling airborne L-band radar sea and coastal land clutter[R]. Technical Report, DSTO-TR-0945, 2000.
    [17] Antipov I. Statistical analysis of northern Australian coastline sea clutter data[R]. Technical Report, DSTO-TR-1236, 2002.
    [18] Dong Y. Clutter spatial distribution and new approaches of parameter estimation for Weibull and K-distributions[R]. Technical Report, DSTO-RR-0274, 2004.
    [19] Dong Y. Distribution of X-band high resolution and high grazing angle sea clutter[R]. Technical Report, DSTO-RR-0316, 2006.
    [20] Dong Y. High grazing angle and high resolution sea clutter correlation and polarization analyses[R]. Technical Report, DSTO-TR-1972, 2007.
    [21] Dong Y and Merrett D. Statistical measures of S-band sea clutter and targets[R]. Technical Report, DSTO-TR-2221, 2008.
    [22] Dong Y and Merrett D. Analysis of L-band multi-channel sea clutter[R]. Technical Report, DSTO-TR-2455, 2010.
    [23] Bocquet S. Calculation of radar probability of detection in K-distributed sea clutter and noise[R]. Technical Report, DSTO-TN-1000, 2011.
    [24] Weinberg G. Investigation of the Pareto distribution as a model for high grazing angle clutter[R]. Technical Report, DSTO-TR-2525, 2011.
    [25] Dong Y, Rosenberg L, and Weinberg G. Generating correlated gamma sequences for sea-clutter simulation[R]. Technical Report, DSTO-TR-2688, 2012.
    [26] Rosenberg L and Watts S. High grazing angle sea-clutter literature review[R]. Technical Report, DSTO-GD-0736, 2013.
    [27] Whitrow J L. A model of low grazing angle sea clutter for coherent radar performance analysis[R]. Technical Report, DSTO-TR-2864, 2013.
    [28] Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[R]. Technical Report, DSTO-TR-2820, 2013.
    [29] Ward K D, Barker C J, and Watts S. Maritime surveillance radar Part 1:Radar scattering from the ocean surface[J]. IEE Proceedings-F, 1990, 137(2):51-63.
    [30] Greco M, Gini F, and Rangaswamy M. Statistical analysis of measured polarimetric clutter data at different range resolutions[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6):473-481.
    [31] Gregers-Hansen V and Mital R. An improved empirical model for radar sea clutter reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3512-3524.
    [32] Raynal M A and Doerry A W. Doppler characteristics of sea clutter[R]. Technical Report, SAND2010-3828, 2010.
    [33] Watts S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3303-3317.
    [34] Al-Ashwal W A, Woodbridge K, and Griffiths H D. Analysis of bistatic sea clutter-Part I:Average reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1283-1292.
    [35] Al-Ashwal W A, Woodbridge K, and Griffiths H D. Analysis of bistatic sea clutter-Part Ⅱ:Amplitude statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1293-1303.
    [36] Gini F and Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):115-124.
    [37] Plant W J. Microwave sea return at moderate to high incidence angles[J]. Waves in Random Media, 2003, 13(4):339-354.
    [38] Gotwols B L, Thompson D R, and Chapman R D. Ocean backscatter distribution functions at mid incidence[C]. Proceedings Engineering in Harmony with Ocean, 1993:Ⅱ/10.
    [39] Greco M, Stinco P, and Gini F. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1502-1513.
    [40] Lamont-Smith T, Waseda T, and Rheem C K. Measurements of the Doppler spectra of breaking waves[J]. IET Radar, Sonar & Navigation, 2007, 1(2):149-157.
    [41] Trunk G V and George S F. Detection of targets in non-Gaussian sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(5):620-628.
    [42] Trunk G V. Radar properties of non-Rayleigh sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(2):196-204.
    [43] Trunk G V. Non-Rayleigh sea clutter:Properties and detection of targets[R]. NRL Report, 1976, No. 7986.
    [44] Jakeman E and Pusey P N. A model for non-Rayleigh sea echo[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(6):806-814.
    [45] Sangston K J and Gerlach K R. Coherent detection of radar targets in a non-Gaussian background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2):330-340.
    [46] Chan H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings-F, 1990, 137(2):102-112.
    [47] Stehwien W. Statistics and correlation properties of high resolution X-band sea clutter[C]. Proceedings of the 1994 IEEE National Radar Conference, 1994:36-51.
    [48] Conte E, Maio A De, and Galdi C. Statistical analysis of real clutter at different range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3):903-918.
    [49] Haykin S, Bakker R, and Currie B W. Uncovering nonlinear dynamics:The case study of sea clutter[J]. Proceedings of the IEEE, 2002, 90(5):860-881.
    [50] Greco M, Bordoni F, and Gini F. X-band sea-clutter nonstationarity:Influence of long waves[J]. IEEE Journal of Ocean Engineering, 2004, 29(2):269-283.
    [51] Watts S and Wicks D C. Empirical models for prediction in K-distribution radar sea clutter[C]. IEEE International Radar Conference, 1990:189-194.
    [52] Ryan J and Johnson M. Radar performance prediction for target detection at sea[C]. IEE Conference Radar-92, 1992:13-17.
    [53] Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):617-625.
    [54] Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8):248-250.
    [55] Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2):284-302.
    [56] Pulsone N B and Raghavan R S. Analysis of an adaptive CFAR detector in non-Gaussian interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):903-916.
    [57] Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds[J]. IEEE Transactions on Signal Processing, 2005, 53(6):2101-2111.
    [58] Farina A, Gini F, Greco M V, et al.. High resolution sea clutter data:Statistical analysis of recorded live data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(3):121-130.
    [59] Shnidman D A. Generalized radar clutter model[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):857-865.
    [60] Rosenberg L and Bocquet S. Application of the Pareto plus noise distribution to medium grazing angle sea-clutter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):255-261.
    [61] Liu Y, Frasier S J, and Mcintosh R E. Measurement and classification of low-grazing-angle radar sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1):27-40.
    [62] Gutnik V G, Kulemin G P, and Sharapov L. Spike statistics features of the radar sea clutter in the millimeter wave band at extremely small grazing angles[J]. Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001, 43(3):426-428.
    [63] Melief H W, Greidanus H, and Genderen P. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4):985-993.
    [64] Lyzenga D R, Maffett A L, and Shuchman R A. The contribution of wedge scattering to the radar cross section of the ocean surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(4):502-505.
    [65] Keller M R, Gotwols B L, and Chapman R D. Multiple sea spike definitions:Reducing the clutter[C]. Geoscience and Remote Sensing Symposium, 2002:940-942.
    [66] Posner F and Gerlach K. Sea spike demographics at high range resolutions and very low grazing angles[C]. Radar Conference, Proceedings of the 2003 IEEE, 2003:38-45.
    [67] Posner F L. Spiky sea clutter at high range resolutions and very low grazing angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1):58-73.
    [68] Greco M, Stinco P, and Gini F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar & Navigation, 2010, 4(2):239-250.
    [69] Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4556-4562.
    [70] Middleton D. New physical-statistical methods and models for clutter and reverberation:The KA-distribution and related probability structures[J]. IEEE Journal of Ocean Engineering, 1999, 24(3):261-283.
    [71] Ward K D and Tough R J. Radar detection performance in sea clutter with discrete spikes[C]. International Conference Radar 2002, 2002:253-257.
    [72] Watts S, Ward K D, and Tough R J A. The physics and modelling of discrete spikes in radar sea clutter[C]. Proceedings of International Radar Conference, 2005:72-77.
    [73] Rosenberg L, Crisp D J, and Stacy N J. Analysis of the KK-distribution with medium grazing angle sea-clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):209-222.
    [74] Blunt S D, Gerlach K, and Heyer J. HRR detector for slow-moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):965-974.
    [75] 许心瑜, 张玉石, 黎鑫, 等. L波段小擦地角海杂波KK分布建模[J]. 系统工程与电子技术, 2014, 36(7):1304-1308. Xu X Y, Zhang Y S, Li X, et al.. KK distribution modeling with L band low grazing sea clutter[J]. Systems Engineering and Electronics, 2014, 36(7):1304-1308.
    [76] 高彦钊, 占荣辉, 万建伟. KK分布杂波下的距离扩展目标检测算法[J]. 国防科技大学学报, 2015, 37(1):118-124. Gao Y Z, Zhan R H, and Wan J W. Range-spread target detection in KK-distributed clutter[J]. Journal of National University of Defense Technology, 2015, 37(1):118-124.
    [77] Ding H, Huang Y, Liu N B, et al.. Modeling of sea spike events with generalized extreme value distribution[C]. Proceedings European Radar Conference (EuRAD), 2015:113-116.
    [78] Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2):775-780.
    [79] Gotwols B L and Thompson D R. Ocean microwave backscatter distributions[J]. Journal of Geophysical Research, 1994, 99(C5):9741-9750.
    [80] Ollila E, Tyler D E, Koivunen V, et al.. Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12):876-879.
    [81] Anastassopoulos V, Lampropoulos G A, and Drosopoulos A. High resolution radar clutter statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1):43-60.
    [82] Fayard P and Field T R. Inference of a generalised texture for a compound-Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):187-194.
    [83] Gini F, Greco M, Diani M, et al.. Performance analysis of two adaptive radar detectors against non-Gaussian real sea clutter data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1429-1439.
    [84] Farshchian M and Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]. IEEE Radar Conference, 2010:789-793.
    [85] Rosenberg L and Bocquet S. The Pareto distribution for high grazing angle sea-clutter[C]. IEEE International Geoscience and Remote Sensing Symposium, 2013:4209-4212.
    [86] Weinberg G V. Assessing Pareto fit to high-resolution high-grazing-angle sea clutter[J]. Electronics Letters, 2011, 47(8):516-517.
    [87] Rosenberg L, Watts S, and Bocquet S. Application of the K+Rayleigh distribution to high grazing angle sea-clutter[C]. International Radar Conference, 2014:1-6.
    [88] Fiche A, Angelliaume S, Rosenberg L, et al.. Analysis of X-Band SAR sea-clutter distributions at different grazing angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4650-4660.
    [89] Hu J, Tung W, and Gao J. A new way to model nonstationary sea clutter[J]. IEEE Signal Processing Letters, 2009, 16(2):129-132.
    [90] Tsihrintzis G A and Nikias C L. Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(1):29-37.
    [91] 石志广, 周剑雄, 付强. K分布海杂波参数估计方法研究[J]. 信号处理, 2007, 23(3):420-424. Shi Z G, Zhou J X, and Fu Q. Parameter estimation study of K-distributed sea clutter[J]. Signal Processing, 2007, 23(3):420-424.
    [92] Marier L J. Correlated K-distributed clutter generation for radar detection and track[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):568-580.
    [93] Davidson G. Simulation of coherent sea clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):168-177.
    [94] Pidgeon V W. Doppler dependence of radar sea return[J]. Journal of Geophysical Research, 1968, 73:1333-1341.
    [95] Lee P, Barter J D, Beach K L, et al.. Power spectral lineshapes of microwave radiation backscattered from sea surfaces at small grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(5):252-258.
    [96] Lamont-Smith T. An empirical model of EM scattering from steepening wave profiles derived from numerical computations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1447-1454.
    [97] Lamont-Smith T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5):291-298.
    [98] Lamont-Smith T. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle[J]. IET Radar, Sonar & Navigation, 2008, 2(2):97-103.
    [99] Lamont-Smith T, Mitomi M, Kawamura T, et al.. Electromagnetic scattering from wind blown waves and ripples modulated by longer waves under laboratory conditions[J]. IET Radar, Sonar & Navigation, 2010, 4(2):265-279.
    [100] Lee P, Barter J D, and Lake B M. Lineshape analysis of breaking wave Doppler spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(2):135-139.
    [101] Walker D. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(3):114-120.
    [102] Walker D. Doppler modelling of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(2):73-80.
    [103] Rosenberg L. Characterization of high grazing angle X-band sea-clutter Doppler spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):406-417.
    [104] Rosenberg L and Stacy N J. Analysis of medium grazing angle X-band sea-clutter Doppler spectra[C]. Proceedings of the IEEE Radarcon Conference, 2008:1-6.
    [105] Watts S. The effects of covariance matrix mismatch on adaptive CFAR performance[C]. IEEE Radar 2013 International Conference, 2013:495-499.
    [106] Miller R J. Variability in spectra of low-grazing angle sea clutter returns[R]. NATO/RTO Publications, Proceedings of SET Symposium on Low Grazing Angle Clutter:Its Characterisation, Measurement and Application, 2000.
    [107] Ritchie M A, Stove A G, Watts S, et al.. Application of a new sea clutter Doppler model[C]. IEEE Radar 2013 International Conference, 2013:560-565.
    [108] Watts S, Rosenberg L, Bocquet S, et al.. Doppler spectra of medium grazing angle sea clutter Part 1:Characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1):24-31.
    [109] Watts S, Rosenberg L, Bocquet S, et al.. Doppler spectra of medium grazing angle sea clutter Part 2:Model assessment and simulation[J]. IET Radar, Sonar & Navigation, 2016, 10(1):32-42.
    [110] Baker C J. K-distributed coherent sea clutter[J]. IEE Proceedings-F, 1991, 138(2):89-92.
    [111] Ritchie M A, Woodbridge K, and Stove A G. Analysis of sea clutter distribution variation with Doppler using the compound K-distribution[C]. IEEE Radar 2010 International Conference, 2010:495-499.
    [112] Ding H, Sun Y L, Liu N B, et al.. Bispectrum property analysis of high resolution real sea clutter[C]. IET International Radar Conference, 2015:1-4.
    [113] Haykin S and Thomson D J. Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem[J]. Proceedings of the IEEE, 1998, 86(11):2325-2344.
    [114] Guan J, Zhang J, and Liu N B. Time-frequency entropy of Hilbert-Huang transformation for detecting weak target in the sea clutter[C]. 2009 IEEE Radar Conference, 2009:1-5.
    [115] 张建, 黄勇, 关键, 等. 基于局部Hilbert边际谱隶属度的微弱目标检测算法[J]. 信号处理, 2011, 27(9):1335-1340. Zhang J, Huang Y, Guan J, et al.. Weak target detection based on the membership degree of partial Hilbert marginal spectrum[J]. Signal Processing, 2011, 27(9):1335-1340.
    [116] Chen X L, Guan J, Bao Z H, et al.. Detection and extraction of target with micro-motion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
    [117] Rosenberg L. The effect of temporal correlation with K and KK-distributed sea-clutter[C]. IEEE Radarcon Conference, 2012:0303-0308.
    [118] Siegel A, Ochadlick A, Davis Jr J, et al.. Spatial and temporal correlation of LOGAN-1 high-resolution radar sea clutter data[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, 1994:818-821.
    [119] Farina A, Gini F, Greco M V, et al.. Improvement factor for real sea-clutter Doppler frequency spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):341-344.
    [120] Watts S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):321-327.
    [121] Raghavan R S. A model for spatially correlated radar clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):268-275.
    [122] Lombardo P and Oliver C J. Estimating the correlation properties of K-distributed SAR clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(4):167-178.
    [123] Watts S and Ward K D. Spatial correlation in K-distributed sea clutter[J]. IEE Proceedings F Communications, Radar and Signal Processing, 1987, 134(6):526-532.
    [124] Armstrong B C and Griffiths H D. Modeling spatially correlated K-distributed clutter[J]. Electronics Letters, 1991, 27(15):1355-1356.
    [125] Armstrong B C and Griffiths H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F-Radar and Signal Processing, 1991, 138(2):139-152.
    [126] Tough R J A, Ward K D, and Shepherd P W. The modelling and exploitation of spatial correlation in spiky sea clutter[C]. EMRS DTC 2nd Annual Conference, 2005:A1.
    [127] 关键, 丁昊, 黄勇, 等. 实测海杂波数据空间相关性研究[J]. 电波科学学报, 2012, 27(5):943-954. Guan J, Ding H, Huang Y, et al.. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5):943-954.
    [128] Ding H, Guan J, Liu N B, et al.. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1833-1837.
    [129] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12):1-9. He Y, Huang Y, Guan J, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12):1-9.
    [130] Stankovic L, Thayaparan T, and Dakovic M. Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4332-4342.
    [131] Dong Y H and Crisp D J. The Euler decomposition and its application to sea clutter analysis[C]. IEEE International Conference on Radar, 2008:133-138.
    [132] Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and Non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 1998, 454(1971). doi:10.1098/rspa.1998.0193.
    [133] Gini F and Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):115-124.
    [134] Gini F, Giannakis G B, Greco M, et al.. Time-averaged subspace methods for radar clutter texture retrieval[J]. IEEE Transactions on Signal Processing, 2001, 49(9):1886-1898.
    [135] Dinesh R and Jeffrey K. Adaptive radar detection in doubly nonstationary autoregressive Doppler spread clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):484-497.
    [136] Carretero-Moya J, Gismero-Menoyo J, Asensio-Lopez A, et al.. Small-target detection in high-resolution heterogeneous sea-clutter:an empirical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3):1880-1898.
    [137] Leung H and Lo T. Chaotic radar signal processing over the sea[J]. IEEE Journal of Ocean Engineering, 1993, 18(3):287-295.
    [138] Unsworth C P, Cowper M R, Mclaughlin S, et al.. Re-examining the nature of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):105-114.
    [139] Mcdonald M and Damini A. Limitations of nonlinear chaotic dynamics in predicting sea clutter returns[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(2):105-113.
    [140] Blu T and Unser M. Self-similarity:Part Ⅱ-Optimal estimation of fractal processes[J]. IEEE Transactions on Signal Processing, 2007, 55(4):1364-1378.
    [141] Hu J, Tung W W, and Gao J B. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antenna and Propagation, 2006, 54(1):136-143.
    [142] Hu J, Gao J B, Posner F L, et al.. Target detection within sea clutter:A comparative study by fractal scaling analyses[J]. Fractals, 2006, 14(3):187-204.
    [143] Peng C K, Buldyrev S V, Goldberger A L, et al.. Statistical properties of DNA sequences[J]. Physica A, 1995, 221(1/3):180-192.
    [144] Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al.. Detecting long range correlations with detrended fluctuation analysis[J]. Physica A, 2001, 295(3/4):441-454.
    [145] Bashan A, Bartsch R, Kantelhardt J W, et al.. Comparison of detrending methods for fluctuation analysis[J]. Physica A, 2008, 387(21):5080-5090.
    [146] Xu X K. Low observable targets detection by joint fractal properties of sea clutter:An experimental study of IPIX OHGR datasets[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4):1425-1429.
    [147] 许小可. 基于非线性分析的海杂波处理与目标检测[D].[博士论文], 大连海事大学, 2008. Xu X K. Sea clutter processing and target detecting based on nonlinear analysis[D].[Ph.D. dissertation], Dalian Maritime University, 2008.
    [148] 丁昊, 关键, 黄勇, 等. 非平稳海杂波的消除趋势波动分析[J]. 电波科学学报, 2013, 28(1):116-123. Ding H, Guan J, Huang Y, et al.. Detrended fluctuation analysis of non-stationary sea clutter[J]. Chinese Journal of Radio Science, 2013, 28(1):116-123.
    [149] Ding H, Wang G Q, and Guan J. Analysis of sea clutter fractal property and target detection based on fit error[C]. Asia-Pacific Conference on Antennas and Propagation Conference, 2012.
    [150] Guan J, Liu N B, Zhang J, et al.. Multifractal correlation characteristic for radar detecting low-observable target in sea clutter[J]. Signal Processing, 2010, 90(2):523-535.
    [151] Liu N B, Ding H, Xue Y H, et al.. Approximate fractality of sea clutter fractional Fourier transform spectrum[C]. Proceedings European Radar Conference (EuRAD), 2015:117-120.
    [152] Guan J, Liu N B, Huang Y, et al.. Fractal characteristic in frequency domain for target detection within sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5):293-306.
    [153] 刘宁波, 关键, 黄勇, 等. 基于海杂波频谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(3):424-431. Liu N B, Guan J, Huang Y, et al.. Target detection within sea clutter based on multi-scale Hurst exponent in frequency domain[J]. Acta Electronica Sinica, 2013, 41(3):424-431.
    [154] 刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9):1847-1853. Liu N B, Guan J, Wang G Q, et al.. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9):1847-1853.
    [155] 刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34(4):929-935. Liu N B, Huang Y, Guan J, et al.. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34(4):929-935.
  • [1] 陈世超罗丰胡冲聂学雅 . 基于多普勒谱非广延熵的海面目标检测方法. 雷达学报, 2019, 8(3): 344-354. doi: 10.12000/JR19012
    [2] 闫亮孙培林易磊韩宁汤俊 . 基于逆高斯分布的复合高斯海杂波建模研究. 雷达学报, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
    [3] 刘宁波董云龙王国庆丁昊黄勇关键陈小龙何友 . X波段雷达对海探测试验与数据获取. 雷达学报, 2019, 8(5): 656-667. doi: 10.12000/JR19089
    [4] 陈小龙关键何友 . 微多普勒理论在海面目标检测中的应用及展望. 雷达学报, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102
    [5] 左磊产秀秀禄晓飞李明 . 基于空域联合时频分解的海面微弱目标检测方法. 雷达学报, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [6] 张林赵志坚关键何友 . 基于自适应阈值选择的非参量GS 检测算法. 雷达学报, 2012, 1(4): 387-392. doi: 10.3724/SP.J.1300.2012.20084
    [7] 陈小龙董云龙李秀友关键 . 海面刚体目标微动特征建模及特性分析. 雷达学报, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [8] 张新勋周生华刘宏伟 . 目标极化散射特性对极化分集雷达检测性能的影响. 雷达学报, 2019, 8(4): 510-518. doi: 10.12000/JR18112
    [9] 丁昊刘宁波董云龙陈小龙关键 . 雷达海杂波测量试验回顾与展望. 雷达学报, 2019, 8(3): 281-302. doi: 10.12000/JR19006
    [10] 苏宁远陈小龙关键牟效乾刘宁波 . 基于卷积神经网络的海上微动目标检测与分类方法. 雷达学报, 2018, 7(5): 565-574. doi: 10.12000/JR18077
    [11] 崔国龙余显祥杨婧付月孔令讲 . 认知雷达波形优化设计方法综述. 雷达学报, 2019, 8(5): 537-557. doi: 10.12000/JR19072
    [12] 杨海峰谢文冲王永良 . 不同发射波形下多机协同探测雷达系统信号建模与性能分析. 雷达学报, 2017, 6(3): 267-274. doi: 10.12000/JR16142
    [13] 张增辉郁文贤 . 稀疏微波SAR图像特征分析与目标检测研究. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [14] 刘俊凯李健兵马梁陈忠宽蔡益朝 . 基于矩阵信息几何的飞机尾流目标检测方法. 雷达学报, 2017, 6(6): 699-708. doi: 10.12000/JR17058
    [15] 曾丽娜周德云李枭扬张堃 . 基于无训练单样本有效特征的SAR目标检测. 雷达学报, 2017, 6(2): 177-185. doi: 10.12000/JR16114
    [16] 赵永科吕晓德 . 一种联合优化的无源雷达实时目标检测算法. 雷达学报, 2014, 3(6): 666-674. doi: 10.12000/JR14005
    [17] 王璐璐王宏强王满喜黎湘 . 雷达目标检测的最优波形设计综述. 雷达学报, 2016, 5(5): 487-498. doi: 10.12000/JR16084
    [18] 赵春雷王亚梁阳云龙毛兴鹏于长军 . 雷达极化信息获取及极化信号处理技术研究综述. 雷达学报, 2016, 5(6): 620-638. doi: 10.12000/JR16092
    [19] 谢文冲段克清王永良 . 机载雷达空时自适应处理技术研究综述. 雷达学报, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [20] 唐玥毛天江冰 . 多分辨率复合数字阵列天线的设计与实验. 雷达学报, 2016, 5(3): 265-270. doi: 10.12000/JR16005
  • 加载中
计量
  • 文章访问数:  877
  • HTML浏览量:  228
  • PDF下载量:  1709
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 录用日期:  2016-10-09
  • 刊出日期:  2016-10-28

海杂波特性认知研究进展与展望

    通讯作者: 丁昊, hao3431@tom.com
    通讯作者: 关键, hao3431@tom.com
    作者简介: 丁昊(1988-),男,博士研究生,主要研究方向为海杂波特性认知、雷达目标检测等。E-mail:hao3431@tom.com;关键(1968-),男,教授,博士生导师,获全国优秀博士学位论文奖,新世纪百千万人才工程国家级人选。主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合。E-mail:guanjian96@tsinghua.org.cn
  • 1. (海军航空工程学院电子信息工程系 烟台 264001)
基金项目:  国家自然科学基金(61179017,61201445,61401495)

摘要: 海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。

English Abstract

参考文献 (155)

目录

    /

    返回文章
    返回