极化合成孔径雷达极化层次和系统工作方式

杨汝良 戴博伟 李海英

引用本文:
Citation:

极化合成孔径雷达极化层次和系统工作方式

    通讯作者: 杨汝良, rlyang@mail.ie.ac.cn
  • 基金项目:

    863项目和国家部委基金

Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar

    Corresponding author: Yang Ruliang, rlyang@mail.ie.ac.cn ;
  • Fund Project: The National 863 Program of China, The National Ministries Foundation

  • 摘要: 极化合成孔径雷达的极化层次和系统工作方式是极化合成孔径雷达总体设计的关键技术之一。该文讨论了极化合成孔径雷达的极化层次,含单极化、双极化、全极化和简缩极化合成孔径雷达,较深入地分析了极化合成孔径雷达系统的工作方式,包括极化时间分割、极化频率分割、极化编码和方位向极化空间分割等方式。
  • [1] Kostinski A B and Boerner W M. On foundation of radar polarimetry[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(12): 1395-1403.
    [2] Cloude S R and Pottier E. An entropy based classification scheme for land application of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
    [3] Dong Y, Milne A K, and Forster B C. Segmentation and classification of vegetated areas using polarimetric SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 321-329.
    [4] Freeman A. Fitting a two-component scattering model to polarimetric SAR data from forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2583-2592.
    [5] Mattia F, Floury N, and Moreira A. Foreword to the special issue on retrieval of bio-and geophysical parameters from SAR data for land applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 379-380. DOI: 10.1109/TGRS.2009.2012837.
    [6] Ulaby F T and Elachi Charles. Radar Polarimetry for Geoscience Applications[M]. Artech House Inc, Boston, London, 1990: 281-295.
    [7] Oh Y, Sarabandi K, and Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation[C]. IEEE Geoscience and Remote Sensing Symposium, Pasadena, 1994, 3: 1582-1584. DOI: 10.1109/IGARSS.1994.399504.
    [8] Dierking W and Wesche C. C-band radar polarimetry useful for detection of icebergs in sea ice?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 25-37.
    [9] He Yijun, Perrie W, and Xie Tao, et al.. Ocean wave spectra from a linear polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2623-2631.
    [10] Zhang B, Perrie W, and Vachon P W, et al.. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4252-4261.
    [11] Novak L M, Sechtin M B, and Cardullo M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 150-165.
    [12] Monaldo F. SEASAT sees the winds with SAR[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 1: 38-40. DOI: 10.1109/IGARSS.2003.1293671.
    [13] Monaldo F M, Jackson C R, and Pichel W G. Seasat to RADARSAT-2: research to operations[J]. Oceanography, 2013, 26(2): 34-45.
    [14] Desnos Y L, Buck C, Guijarro J, et al.. The envisat advance synthetic aperture radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, 2000, 3: 1171-1173. DOI: 10.1109/IGARSS.2000.858057.
    [15] Hawkins R K, Touzi R, Wolfe J, et al.. ASAR AP mode performance and applications potential[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 2: 1115-1117. DOI: 10.1109/IGARSS.2003.1294029.
    [16] Freeman A, Alves M, Chapman B, et al.. SIR-C data quality and calibration results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 848-857. DOI: 10.1109/36.406671.
    [17] Jordan R L, Huneycutt B L, and Werner M. The SIR-C\X-SAR synthentic aperture radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 829-839. DOI: 10.1109/36.406669
    [18] Fox Peter A, Luscombe Anthony P, and Thompson Alan A. Radarsat-2 SAR modes development and utilization[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 258-264.
    [19] Fujimra T and Kimura T. Compact polarimetric observation using phased array antenna and its case study for PALSAR[C]. EUSAR, 2008: 1-4.
    [20] Mittermayer J and Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 3: 2140-2142. DOI: 10.1109/IGARSS.2003.1294365.
    [21] Stangl M, Werninghaus R, and Zahn R. The TerraSAR-X active phased array antenna[C]. IEEE International Symposium on Phased Array Systems and Technology, 2003: 70-75. DOI: 10.1109/PAST.2003.1256959.
    [22] ME Nord, Ainsworth T L, Lee J S, et al.. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 174-188.
    [23] Spudis P, Nozette S, Bussey B, et al.. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon[J]. Current Science, 2009, 96(4): 533-539.
    [24] Raney R K, Spudis P D, Bussey B, et al.. The lunar mini-RF radars: hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2010, 99(5): 808-823.
    [25] Misra Tapan, Rana S S, Bora V H, et al.. SAR Payload of Radar Imaging Satellite (RISAT) of ISRO[C]. EUSAR, 2006: 1-4.
    [26] Geldsetzer T, Arkett M, and Zagon T. All season assessment of RADARSAT constellation mission compact polarimetry modes for canadian ICE service operational implementation[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, 2014: 1560-1563. DOI: 10.1109/IGARSS.2014.6946737.
    [27] Souyris J C and Mingot S. Polarimetry based on one transmitting and two receiving polarizations: the /4 mode[C]. IEEE International Geoscience and Remote Sensing Symposium, 2002, 1: 629-631. DOI: 10.1109/IGARSS.2002.1025127.
    [28] Souyris J C, Imbo P, Fjortoft R, et al.. Compact polarimetry based onsymmetry properties of geophysical media: the /4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634-646. DOI: 10.1109/TGRS.2004.842486.
    [29] Raney R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397-3404. DOI: 10.1109/TGRS.2007.895883.
    [30] Raney R K. Hybrid-quad-pol SAR[C]. IEEE Geoscience and Remote Sensing Symposium, 2008, 4: 491-493. DOI: 10.1109/IGARSS.2008.4779765.
    [31] 戴博伟. 多极化合成孔径雷达系统与极化信息处理研究[D]. [博士论文], 中国科学院电子研究所, 2000. Dai Bowei. The research of polarimetric SAR system and polarimetric information processing[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2000.
    [32] Raney R K. Dual-polarized SAR and Stokes parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 317-319.
    [33] COSMO-SkyMed System Description User Guide[R]. 4 May, 2007.
    [34] COSMO-SkyMed System HandBook[R]. 30 April, 2007.
    [35] Shirvany R, Chabert M, and Tourneret J Y. Comarision of ship detection on performance based on the degree of polarization in hybrid/compact and linear dual-pol SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, 2011: 3550-3553. DOI: 10.1109/IGARSS.2011.6049988.
    [36] Lardeux C, Niamen D, Routier J B, et al.. Use of PALSAR polarimetric data for tropical forest stratification and comparison of simulated dual and compact polarimetric modes[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, 2010: 1855-1858. DOI: 10.1109/IGARSS.2010.5650441.
    [37] Singh G, Yamaguchi Y, Park Sang-Eun, et al.. Categorization of the glaciated terrain of indian himalaya using CP and FP mode SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2014, 7(3): 872-880. DOI: 10.1109/JSTARS.2013.2266354.
    [38] Yin Junjun, Yang Jian, Zhou Zheng-Shu, et al.. The extended bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Earth Observations and Remote Sensing, 2015, 8(8): 3760-3772. DOI: 10.1109/JSTARS.2014.2359141.
  • [1] 陶臣嵩陈思伟李永祯肖顺平 . 结合旋转域极化特征的极化SAR地物分类. 雷达学报, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [2] 黄晓菁杨祥立黄平平杨文 . 基于原型理论的极化SAR图像特征表达. 雷达学报, 2016, 5(2): 208-216. doi: 10.12000/JR15071
    [3] 陈思伟李永祯王雪松肖顺平 . 极化SAR目标散射旋转域解译理论与应用. 雷达学报, 2017, 6(5): 442-455. doi: 10.12000/JR17033
    [4] 胡丁晟仇晓兰雷斌徐丰 . 极化串扰对基于Cloude分解的地物散射机制特征量影响分析. 雷达学报, 2017, 6(2): 221-228. doi: 10.12000/JR16129
    [5] 孙勋黄平平涂尚坦杨祥立 . 利用多特征融合和集成学习的极化SAR图像分类. 雷达学报, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [6] 王岩飞刘畅詹学丽韩松 . 无人机载合成孔径雷达系统技术与应用. 雷达学报, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [7] 李道京胡 烜 . 合成孔径激光雷达光学系统和作用距离分析. 雷达学报, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [8] 吴一戎 . 多维度合成孔径雷达成像概念. 雷达学报, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
    [9] 赵雨露张群英李超纪奕才方广有 . 视频合成孔径雷达振动误差分析及补偿方案研究. 雷达学报, 2015, 4(2): 230-239. doi: 10.12000/JR14153
    [10] 詹学丽王岩飞王超李和平 . 一种用于合成孔径雷达的数字去斜方法. 雷达学报, 2015, 4(4): 474-480. doi: 10.12000/JR14117
    [11] 林世斌李悦丽严少石周智敏 . 平地假设对合成孔径雷达时域算法成像质量的影响研究. 雷达学报, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
    [12] 李海英张珊珊李世强张华春 . 环境一号C 卫星合成孔径雷达相干性分析. 雷达学报, 2014, 3(3): 320-325. doi: 10.3724/SP.J.1300.2014.13060
    [13] 曾操梁思嘉王威徐青 . 基于频率步进信号的旋转式合成孔径雷达成像方法. 雷达学报, 2014, 3(4): 401-408. doi: 10.3724/SP.J.1300.2014.14043
    [14] 路满宋红军罗运华 . 基于调频连续波信号的圆弧式合成孔径雷达成像方法. 雷达学报, 2016, 5(4): 425-433. doi: 10.12000/JR16007
    [15] 曾涛 . 双基地合成孔径雷达发展现状与趋势分析. 雷达学报, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093
    [16] 金添 . 叶簇穿透合成孔径雷达增强成像方法. 雷达学报, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [17] 张珂殊潘洁王然李光祚王宁吴一戎 . 大幅宽激光合成孔径雷达成像技术研究. 雷达学报, 2017, 6(1): 1-10. doi: 10.12000/JR16152
    [18] 钟雪莲向茂生郭华东陈仁元 . 机载重轨干涉合成孔径雷达的发展. 雷达学报, 2013, 2(3): 367-381. doi: 10.3724/SP.J.1300.2013.13005
    [19] 张月婷丁赤飚王宏琦胡东辉 . 分析圆柱油罐目标合成孔径雷达图像的新方法. 雷达学报, 2012, 1(2): 190-195. doi: 10.3724/SP.J.1300.2012.20020
    [20] 禹卫东杨汝良邓云凯赵凤军雷宏 . HJ-1-C 卫星合成孔径雷达载荷的设计与实现. 雷达学报, 2014, 3(3): 256-265. doi: 10.3724/SP.J.1300.2014.14020
  • 加载中
计量
  • 文章访问数:  732
  • HTML浏览量:  660
  • PDF下载量:  1799
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 录用日期:  2016-03-14
  • 刊出日期:  2016-04-28

极化合成孔径雷达极化层次和系统工作方式

    通讯作者: 杨汝良, rlyang@mail.ie.ac.cn
  • 1. (中国科学院电子学研究所 北京 100190)
  • 2. (中国科学院 北京 100864)
  • 3. (中国科学院国家天文台月球与深空探测重点实验室 北京 100012)
基金项目:  863项目和国家部委基金

摘要: 极化合成孔径雷达的极化层次和系统工作方式是极化合成孔径雷达总体设计的关键技术之一。该文讨论了极化合成孔径雷达的极化层次,含单极化、双极化、全极化和简缩极化合成孔径雷达,较深入地分析了极化合成孔径雷达系统的工作方式,包括极化时间分割、极化频率分割、极化编码和方位向极化空间分割等方式。

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回