基于块压缩感知的SAR层析成像方法

王爱春 向茂生

引用本文:
Citation:

基于块压缩感知的SAR层析成像方法

    作者简介: 王爱春(1981-),男,内蒙古和林格尔县人,中国资源卫星应用中心工程师,中国科学院电子学研究所在读博士生,研究方向为多基线干涉SAR处理方法及应用。E-mail:wangaichun@cresda.com向茂生(1964-),男,中国科学院电子学研究所研究员,博士生导师,研究方向为干涉合成孔径雷达系统技术和方法。E-mail:xms@mail.ie.ac.cn.
    通讯作者: 王爱春, wangaichun@cresda.com
  • 基金项目:

    国家发改委卫星及应用产业发展专项项目发改委高技【2012】2083号

SAR Tomography Based on Block Compressive Sensing

    Corresponding author: Wang Aichun, wangaichun@cresda.com ;
  • Fund Project: National Development and Reform Commission Satellite and Application Development Projects【2012】2083

  • 摘要: 基于压缩感知(Compressive Sensing, CS)的SAR层析成像方法(SAR Tomography, TomoSAR),虽然实现了对目标的3维重构,但对于具有结构特性的目标其重构性能较差。针对这一问题,该文提出了采用块压缩感知(Block Compressive Sensing, BCS)算法,该方法首先在CS方法基础上将具有结构特性的目标信号重构问题转化为BCS问题,然后根据目标结构特性与雷达参数的关系确定块的大小,最后对目标进行块稀疏的l1/l2范数最优化求解。相比基于CS的SAR层析成像方法,该方法更好地利用了目标的稀疏特性和结构特性,其重构精度更高、性能更优。仿真数据和Radarsat-2星载SAR实测数据的试验结果验证了该方法的有效性。
  • [1] Knaell K and Cardillo G P. Radar tomography for the generation of three-dimensional images[J]. IEEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54-60.
    [2] Reigber A and Moreira A. First demonstration of airborne SAR Tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(9): 2142-2152.
    [3] She Z, Gray D A, Bogner R E, et al.. Three-dimensional space-borne Synthetic Aperture Radar (SAR) imaging with multiple pass processing[J]. International Journal of Remote Sensing, 2002, 23(20): 4357-4382.
    [4] Gini F and Lombardini F. Multilook APES for multibaseline SAR interferometry[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1800-1803.
    [5] Lombardini F and Reigber A. Adaptive spectral estimation for multibaseline SAR Tomography with airborne L-band data[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium IGARSS'03, Toulouse, France, 2003, 3: 2014-2016.
    [6] Fornaro G, Serafino F, and Soldovieri F. Three dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 507-517.
    [7] Fornaro G, Lombardini F, and Serafino F. Three-dimensional focusing multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4) : 702-714.
    [8] Frey O and Meier E. 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L-and P-bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3660-3664.
    [9] 任笑真, 杨汝良. 利用FB-MAPES算法估计Tomography SAR高度维信号源数[J]. 电子与信息学报, 2009, 31(7): 1669-1673. Ren Xiao-zhen and Yang Ru-liang. On detection of number of Tomogaphy SAR signals in the elevation direction using the FB-MAPES method[J]. Journal of Electronics Information Technology, 2009, 31(7): 1669-1673.
    [10] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展[J]. 雷达学报, 2014, 3(4): 384-395. Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al.. Current development of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 384-395.
    [11] Zhu X X and Bamler R. Tomographic SAR inversion by L1-Norm regularizationThe compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839-3846.
    [12] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [13] Zhu X X and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne Tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247-258.
    [14] Zhu X X and Bamler R. Superresolving SAR Tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51-58.
    [15] 李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166-2172. Li Lie-chen and Li Dao-jing. Sparse array 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(9): 2166-2172. DOI: 10.3724/SP.J.1146.2013.01645.
    [16] 张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3): 625-630. Zhang Bing-chen, Wang Wan-ying, Bi Hui, et al.. Polarimetric SAR tomography for forested areas based on compressive multiple signal classification[J]. Journal of Electronics Information Technology, 2015, 37(3): 625-630.
    [17] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 124-129. Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, et al.. Compressive sensing in high-resolution 3D SAR Tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 124-129.
    [18] Baraniuk R G, Gevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
    [19] 孙洪, 张智林, 余磊. 从稀疏到结构化稀疏: 贝叶斯方法[J]. 信号处理, 2012, 28(6): 759-773. Sun Hong, Zhang Zhi-lin, and Yu Lei. From sparsity to structured sparsity: bayesian perspective[J]. Signal Processing, 2012, 28(6): 759-773.
    [20] 李廉林, 周小阳, 崔铁军. 结构化信号处理理论和方法的研究进展[J]. 雷达学报, 2015, 4(5): 491-502. Li Lian-lin, Zhou Xiao-yang, and Cui Tie-jun. Perspectives on theories and methods of structural signal processing[J]. Journal of Radars, 2015, 4(5): 491-502.
    [21] Shervashidze N and Bach F. Learning the structure for structured sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902.
    [22] Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [23] Cands E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communication on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
    [24] Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.
    [25] Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    [26] Fu Y, Li H, Zhang Q, et al.. Block-sparse recovery via redundant block OMP[J]. Signal Processing, 2014, 97(7): 162-171.
  • [1] 顾福飞张群杨秋霍文俊王敏 . 基于NCS算子的大斜视SAR压缩感知成像方法. 雷达学报, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [2] 韦顺军田博坤张晓玲师君 . 基于半正定规划的压缩感知线阵三维SAR自聚焦成像算法. 雷达学报, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [3] 肖鹏吴有明于泽李春升 . 一种基于压缩感知恢复算法的SAR图像方位模糊抑制方法. 雷达学报, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [4] 杨军张群罗迎邓冬虎 . 基于压缩感知的认知雷达多目标跟踪方法. 雷达学报, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [5] 刘向阳杨君刚孟进张晓牛德智 . 低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像. 雷达学报, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [6] 田鹤李道京 . 稀疏重航过阵列SAR运动误差补偿和三维成像方法. 雷达学报, 2018, 7(6): 717-729. doi: 10.12000/JR18101
    [7] 吴一戎洪文张冰尘蒋成龙张柘赵曜 . 稀疏微波成像研究进展(科普类). 雷达学报, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [8] 赵曜张冰尘洪文吴一戎 . 基于RIPless 理论的稀疏微波成像波形分析方法. 雷达学报, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032
    [9] 闫敏韦顺军田博坤张晓玲师君 . 基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法. 雷达学报, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [10] 张增辉郁文贤 . 稀疏微波SAR图像特征分析与目标检测研究. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [11] 仲利华胡东辉丁赤飚张问一 . 一种稀疏孔径下大尺寸目标的ISAR 成像方法. 雷达学报, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
    [12] 廖明生魏恋欢汪紫芸TimoBalz张路 . 压缩感知在城区高分辨率SAR层析成像中的应用. 雷达学报, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [13] 钟金荣文贡坚 , . 基于块稀疏贝叶斯学习的雷达目标压缩感知(英文). 雷达学报, 2016, 5(1): 99-108. doi: 10.12000/JR15056
    [14] 李烈辰李道京黄平平 . 基于变换域稀疏压缩感知的艇载稀疏阵列天线雷达实孔径成像. 雷达学报, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [15] 李杭梁兴东张福博吴一戎 . 基于高斯混合聚类的阵列干涉SAR三维成像. 雷达学报, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [16] 陈文峰李少东杨军马晓岩 . 基于线性Bregman迭代类的多量测向量ISAR成像算法研究. 雷达学报, 2016, 5(4): 389-401. doi: 10.12000/JR16057
    [17] 任笑真杨汝良 . 一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法. 雷达学报, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18] 陈莹钟菲郭树旭 . 非合作跳频信号参数的盲压缩感知估计. 雷达学报, 2016, 5(5): 531-537. doi: 10.12000/JR15106
    [19] 刘振魏玺章黎湘 . 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法. 雷达学报, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
    [20] 赵娟白霞 . 一种适用于TDOMP算法的测量矩阵优化方法. 雷达学报, 2016, 5(1): 8-15. doi: 10.12000/JR15131
  • 加载中
计量
  • 文章访问数:  998
  • HTML浏览量:  227
  • PDF下载量:  1437
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-11
  • 录用日期:  2016-01-27
  • 刊出日期:  2016-02-28

基于块压缩感知的SAR层析成像方法

    通讯作者: 王爱春, wangaichun@cresda.com
    作者简介: 王爱春(1981-),男,内蒙古和林格尔县人,中国资源卫星应用中心工程师,中国科学院电子学研究所在读博士生,研究方向为多基线干涉SAR处理方法及应用。E-mail:wangaichun@cresda.com向茂生(1964-),男,中国科学院电子学研究所研究员,博士生导师,研究方向为干涉合成孔径雷达系统技术和方法。E-mail:xms@mail.ie.ac.cn
  • 1. (中国科学院电子学研究所微波成像技术国家级重点实验室 北京 100190)
  • 2. (中国科学院大学 北京 100049)
  • 3. (中国资源卫星应用中心 北京 100094)
基金项目:  国家发改委卫星及应用产业发展专项项目发改委高技【2012】2083号

摘要: 基于压缩感知(Compressive Sensing, CS)的SAR层析成像方法(SAR Tomography, TomoSAR),虽然实现了对目标的3维重构,但对于具有结构特性的目标其重构性能较差。针对这一问题,该文提出了采用块压缩感知(Block Compressive Sensing, BCS)算法,该方法首先在CS方法基础上将具有结构特性的目标信号重构问题转化为BCS问题,然后根据目标结构特性与雷达参数的关系确定块的大小,最后对目标进行块稀疏的l1/l2范数最优化求解。相比基于CS的SAR层析成像方法,该方法更好地利用了目标的稀疏特性和结构特性,其重构精度更高、性能更优。仿真数据和Radarsat-2星载SAR实测数据的试验结果验证了该方法的有效性。

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回