一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法

任笑真 杨汝良

引用本文:
Citation:

一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法

    作者简介: 任笑真(1984-),女,河南偃师人,2010年7月获得中国科学院电子学研究所通信与信息系统博士学位。现为河南工业大学副教授,硕士生导师,研究方位为合成孔径雷达成像和信号处理。E-mail:rxz235@163.com杨汝良(1943-),男,云南昆明人,1965年毕业于电子科技大学雷达系,英国ABERDEEN大学工程系高级访问学者。现为中国科学院电子学研究所航天微波遥感系统部研究员、博士生导师,从事星载、机载合成孔径雷达系统研究工作。.
    通讯作者: 任笑真, rxz235@163.com
  • 基金项目:

    国家自然科学基金(61201390),河南省教育厅科学技术研究重点项目(16A510004)和河南省高等学校青年骨干教师(2015GGJS038)

Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase

    Corresponding author: Ren Xiaozhen, rxz235@163.com ;
  • Fund Project: The National Natural Science Foundation of China (61201390), The Key Scientific Research Project in Universities of Henan Province (16A510004), The Plan for Young Backbone Teacher of Henan Province (2015GGJS038)

  • 摘要: 4维合成孔径雷达获取的观测数据在基线-时间平面非均匀分布。若采用传统成像方法来获取目标散射体的高度-速率维像,则因强副瓣存在,成像效果不理想。当信号具有稀疏性时,压缩感知技术能够利用少量的信号投影值就可实现信号的准确或近似重构。然而标准的压缩感知成像方法是针对实数据进行处理,4维合成孔径雷达成像处理的数据为复数据。因此该文提出了一种基于幅度和相位迭代重建的4维合成孔径雷达成像方法。将4维合成孔径雷达高度-速率成像问题转化为目标复散射系数的幅度和相位联合重建问题,通过在成像过程中引入相位信息来改善成像质量。仿真结果验证了该算法的有效性。
  • [1] Morrison K, Bennett J C, and Nolan M. Using DInSAR to separate surface and subsurface features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3424-3430.
    [2] Fornaro G, D'Agostino N, Giuliani R, et al.. Assimilation of GPS-derived atmospheric propagation delay in DInSAR data processing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2): 784-799.
    [3] Fornaro G, Reale D, and Serafino F. Four-dimensional SAR imaging for height estimation and monitoring of signal and double scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 224-237.
    [4] Lombardini F. Differential tomography: a new framework for SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 37-44.
    [5] Reigber A, Lombardini F, Viviani F, et al.. Three-dimensional and higher-order imaging with tomographic SAR: techniques, applications, issues[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 2915-2918.
    [6] Serafino F, Soldovieri F, Lombardini F, et al.. Singular value decomposition applied to 4D SAR imaging[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Korea, 2005: 2701-2704.
    [7] 孙希龙, 余安喜, 董臻, 等. 一种差分SAR层析高分辨成像方法[J]. 电子与信息学报, 2012, 34(2): 273-278. Sun Xi-long, Yu An-xi, Dong Zhen, et al.. A high resolution method for differential SAR tomography[J]. Journal of Electronics Information Technology, 2012, 34(2): 273-278.
    [8] 任笑真, 杨汝良. 一种基于逆问题的差分干涉SAR层析成像方法[J]. 电子与信息学报, 2010, 32(3): 582-586. Ren Xiao-zhen and Yang Ru-liang. An inverse problem based approach for differential SAR tomography imaging[J]. Journal of Electronics Information Technology, 2010, 32(3): 582-586.
    [9] Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [10] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [11] Zhu X X and Bamler R. Sparse reconstruction techniques for SAR tomography[C]. 17th International Coference on Digital Signal Processing, Corfu, Greece, 2011: 1-8.
    [12] Ren Xiao-zhen and Chen Li-na. Four-dimensional SAR imaging algorithm using Bayesian compressive sensing[J]. Journal of Electromagnetic Waves and Applications, 2014, 28(13): 1661-1676.
    [13] Cetin M and Karl W C. Feature enhanced synthetic aperture radar image formation based on non-quadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623-631.
    [14] Samadi S, Cetin M, and Masnadi-Shirazi M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar Navigation, 2011, 5(2): 182-193.
  • [1] 顾福飞张群杨秋霍文俊王敏 . 基于NCS算子的大斜视SAR压缩感知成像方法. 雷达学报, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [2] 韦顺军田博坤张晓玲师君 . 基于半正定规划的压缩感知线阵三维SAR自聚焦成像算法. 雷达学报, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [3] 王爱春向茂生 . 基于块压缩感知的SAR层析成像方法. 雷达学报, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [4] 杨军张群罗迎邓冬虎 . 基于压缩感知的认知雷达多目标跟踪方法. 雷达学报, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [5] 吴一戎洪文张冰尘蒋成龙张柘赵曜 . 稀疏微波成像研究进展(科普类). 雷达学报, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [6] 金添 . 叶簇穿透合成孔径雷达增强成像方法. 雷达学报, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [7] 刘向阳杨君刚孟进张晓牛德智 . 低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像. 雷达学报, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [8] 李杭梁兴东张福博吴一戎 . 基于高斯混合聚类的阵列干涉SAR三维成像. 雷达学报, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [9] 田鹤李道京 . 稀疏重航过阵列SAR运动误差补偿和三维成像方法. 雷达学报, 2018, 7(6): 717-729. doi: 10.12000/JR18101
    [10] 闫敏韦顺军田博坤张晓玲师君 . 基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法. 雷达学报, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [11] 张增辉郁文贤 . 稀疏微波SAR图像特征分析与目标检测研究. 雷达学报, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [12] 仲利华胡东辉丁赤飚张问一 . 一种稀疏孔径下大尺寸目标的ISAR 成像方法. 雷达学报, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
    [13] 肖鹏吴有明于泽李春升 . 一种基于压缩感知恢复算法的SAR图像方位模糊抑制方法. 雷达学报, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [14] 赵曜张冰尘洪文吴一戎 . 基于RIPless 理论的稀疏微波成像波形分析方法. 雷达学报, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032
    [15] 陈文峰李少东杨军马晓岩 . 基于线性Bregman迭代类的多量测向量ISAR成像算法研究. 雷达学报, 2016, 5(4): 389-401. doi: 10.12000/JR16057
    [16] 刘振魏玺章黎湘 . 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法. 雷达学报, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
    [17] 高敬坤邓彬秦玉亮王宏强黎湘 . 扫描MIMO阵列近场三维成像技术. 雷达学报, 2018, 7(6): 676-684. doi: 10.12000/JR18102
    [18] 赵团邓云凯王宇李宁王翔宇 . 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法. 雷达学报, 2016, 5(5): 548-557. doi: 10.12000/JR16014
    [19] 何峰杨阳董臻梁甸农 . 曲线合成孔径雷达三维成像研究进展与展望. 雷达学报, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [20] 毛永飞汪小洁向茂生 . 机载干涉SAR 区域网三维定位算法. 雷达学报, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
  • 加载中
计量
  • 文章访问数:  823
  • HTML浏览量:  182
  • PDF下载量:  924
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 录用日期:  2016-01-24
  • 刊出日期:  2016-02-28

一种基于幅度和相位迭代重建的四维合成孔径雷达成像方法

    通讯作者: 任笑真, rxz235@163.com
    作者简介: 任笑真(1984-),女,河南偃师人,2010年7月获得中国科学院电子学研究所通信与信息系统博士学位。现为河南工业大学副教授,硕士生导师,研究方位为合成孔径雷达成像和信号处理。E-mail:rxz235@163.com杨汝良(1943-),男,云南昆明人,1965年毕业于电子科技大学雷达系,英国ABERDEEN大学工程系高级访问学者。现为中国科学院电子学研究所航天微波遥感系统部研究员、博士生导师,从事星载、机载合成孔径雷达系统研究工作。
  • 1. (河南工业大学信息科学与工程学院 郑州 450001)
  • 2. (中国科学院电子学研究所 北京 100190)
基金项目:  国家自然科学基金(61201390),河南省教育厅科学技术研究重点项目(16A510004)和河南省高等学校青年骨干教师(2015GGJS038)

摘要: 4维合成孔径雷达获取的观测数据在基线-时间平面非均匀分布。若采用传统成像方法来获取目标散射体的高度-速率维像,则因强副瓣存在,成像效果不理想。当信号具有稀疏性时,压缩感知技术能够利用少量的信号投影值就可实现信号的准确或近似重构。然而标准的压缩感知成像方法是针对实数据进行处理,4维合成孔径雷达成像处理的数据为复数据。因此该文提出了一种基于幅度和相位迭代重建的4维合成孔径雷达成像方法。将4维合成孔径雷达高度-速率成像问题转化为目标复散射系数的幅度和相位联合重建问题,通过在成像过程中引入相位信息来改善成像质量。仿真结果验证了该算法的有效性。

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回