太赫兹时域雷达成像研究

魏明贵 梁达川 谷建强 闵锐 李晋 欧阳春梅 田震 何明霞 韩家广 张伟力

引用本文:
Citation:

太赫兹时域雷达成像研究

    通讯作者: 谷建强, gjq@tju.edu.cn
  • 基金项目:

    国家重点基础研究发展计划(2014CB339800),国家自然科学基金(61107053, 61138001), 国家重大科学仪器设备开发专项(2011YQ150021)资助课题

Terahertz Radar Imaging Based on Time-domain Spectroscopy

    Corresponding author: Gu Jian-qiang, gjq@tju.edu.cn ;
  • 摘要: 该文在太赫兹时域雷达基础上,通过改进后的后向投影(BP)算法对多种模型进行了系统的成像研究,验证了散射太赫兹时域信号的成像机制.成像结果显示实验实现了分辨6mm的空间间隔;同时理论计算证明太赫兹时域雷达具有0.125mm的横向和0.125mm的纵向分辨率潜力.该文还对后向投影算法所产生的环形中心增强现象进行了分析讨论,并讨论了成像背景圆环的原因与抑制方法.
  • [1] Siegel P H. Terahertz technology[J]. IEEE Transections on Microwave Theory and Techniques, 2002, 50(3): 910-928.
    [2] Zhang Tong-yi, and Cao Jun-cheng. Study of the surface and far fields of terahertz radiation generated by large-aperture photoconductive antennas[J]. Chinese Physics B, 2004, 13(10): 1742-1746.
    [3] 许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2007: 206.
    [4] Xu Jin-zhou and Zhang Xi-cheng. Applications of Terahertz Science and Technology [M]. Beijing: Peking University Press. 2007: 206.
    [5] Lee Yun-shi. 崔万照,等译.太赫兹科学与技术原理[M]. 北京: 国防工业出版社, 2012: 192-200.
    [6] Lee Yun-shik. translated by Cui W Z, et al.. Principles of Terahertz Science and Technology[M]. Beijing: National Defence Industry Press, 2012: 192-200.
    [7] 王瑞君,王宏强,庄钊文,等. 太赫兹雷达技术研究进展[J]. 激光与光电子学进展, 2013, 50(4): 040001-040017.
    [8] Wang Rui-jun, Wang Hong-qiang, and Zhuang Zhao-wen, et al.. Research progress of terahertz radar technology[J]. Laser Optoelectronics Progress, 2013, 50(4):040001-040017.
    [9] Xu Zhuo, Gu Chao, Pei Zhi-bin, et al.. Multiband terahertz metamaterial absorber[J]. Chinese Physics B, 2011, 20(1): 017801-01805.
    [10] Tian Lu, Zhou Qing-li, Jin Bin, et al.. Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy[J]. Science in China, 2009, 39(11): 1589-1593.
    [11] Goyette T M, Dickinson J C, Waldman J, et al.. A 1.56 THz compact radar range for W-band imagery of scale-model tactical targets[C]. Algorithms for Synthetic Aperture Radar Imagery VII, Orlando, Florida, USA, 2000:615-622.
    [12] DeMartinis G B, Coulombe M J, Horgan T M, et al.. A 240 GHz polarimetric compact range for scale model RCS Measurements[C]. Antenna Measurements Techniques Association (AMTA), Atlanta, Georgia, USA, 2010::3-8.
    [13] Dengler R J, Cooper K B, Chattopadhyay G, et al.. 600 GHz imaging radar with 2 cm range resolution[C]. IEEE/MTT-S International Microwave Symposium. Digest, Honolulu, HL, 2007: 1371-1374.
    [14] Chattopadhyay G, Cooper K B, Dengler R, et al.. A 600 GHz imaging radar for contraband detection[C]. International Symposium on Space Terahertz Technology 19th, Groningen, Netherlands, 2008: 300-303.
    [15] Cooper K B, Dengler R J, Llombart N, et al.. Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar[J]. IEEE Transections on Microwave Theory and Techniques, 2008, 56(12): 2771-2778.
    [16] 蔡英武, 杨陈, 曾耿华, 等. 太赫兹极高分辨力雷达成像试验研究[J]. 强激光与粒子束, 2012, 24(1): 7-9.
    [17] Cai Ying-wu, Yang Cheng, Zeng Geng-hua, et al.. Experimental research on high resolution terahertz radar imaging[J]. High Power Laser and Particle Beams, 2012, 24(1): 7-9.
    [18] 成彬彬, 江舸, 陈鹏,等. 0.67THz高分辨力成像雷达[J]. 太赫兹科学与电子信息学报, 2013, 11(1): 7-11.
    [19] Cheng Bin-bin, Jiang Ge, Chen Peng, et al. 0.67 THz high resolution imaging radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1): 7-11.
    [20] Mickan S P and Zhang X C. T-Ray sensing and imaging[J]. International Journal of High Speed Electronics and Systems, 2003, 13(2): 601-676.
    [21] 冯伟, 张戎, 曹俊诚. 太赫兹雷达技术研究进展[J]. 物理, 2013,42 (12): 1-5.
    [22] Feng Wei, Zhang Rong, and Cao Jun-cheng. Progress in Terahertz Radar Technology [J]. Physics, 2012,42 (12): 1-5.
    [23] Iwaszczuk K, Heiselberg H, and Jepsen P U. Terahertz radar cross section measurements[C]. 2010 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz 2010), Rome, Italy, 2010:26399-26408.
    [24] Grischkowsky D, Keiding S, Exter M, et al.. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 1990, 7(10): 2006-2015.
    [25] McGowan R W, Cheville R A, and Grischkowsky D. Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging [J]. IEEE Transections on Microwave Theory and Techniques, 2000, 48(3): 417~418.
    [26] 江舸,成彬彬,张健,等.基于0.14 THz成像雷达的RCS测量[J].太赫兹科学与电子信息学报,2014,11(1):19-23.
    [27] Jiang Ge, Cheng Bin-bin, Zhang Jian, et al.. 0.14 THz radar imaging based radar cross section measurement[J]. Information and Electrionic Engineering,2014, 11(1):19-23.
    [28] 蒋彦雯,邓彬,王宏强,等.基于时域光谱系统的太赫兹圆柱RCS测量[J].红外与激光工程,2014,43(7):2223-2227.
    [29] Jiang Yan-wen, Deng bin, Wang Hong-qiang, et al.. RCS measurement of cylinders in terahertz band based on the time-domain spectroscopy system[J]. Infrared and Laser Engineering,2014, 43(7):2223-3337
    [30] 武亚君,黄欣,徐秀丽,等.太赫兹目标RCS缩比测量技术[J].强激光与粒子束,2013,25(6):1541-1544.
    [31] Wu Ya-jun, Huan Xin, Xu Xiu-li, et al.. Radar cross section measurement technique of scale-model targets at terahertz[J]. High Power Laser and Particle Beams, 2013,25 (6):1541-1544.
    [32] Ausherman D A, Kozma A, Walker J L, et al.. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(4): 363 - 400.
    [33] 王乃卫, 粟毅, 陆仲良,等. 冲激雷达旋转目标成像方法[J]. 系统工程与电子技术, 1999, 21(4): 14-19.
    [34] Wang Nai-wei, Su Yi, Lu Zhong-liang, et al.. Impulse radar imaging of rotating objects[J]. Systems Engineering and Electronics, 1999, 21(4): 15-19.
    [35] Liang M Y, Zhang C L, Zhao R, et al.. Experimental 0.22 THz stepped frequency radar system for ISAR imaging[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(9): 780-790.
    [36] Jansen C, Krumbholz N, Geisb R, et al.. Alignment and illumination issues in scaled THz RCS measurements[C]. 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Korea, Busan, 2009:1-2.
    [37] Knott E F. Radar Cross Section measurements[M]. New York, SciTech Publishing Inc, 1993: 16-17.
    [38] Danylov A A, Goyette T M, Waldman J, et al.. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter[J]. Optics Express, 2010, 18(15): 16264-16272.
    [39] Iwaszczuk K, Heiselberg H, and Jepsen P U. Terahertz radar crosssection measurements [J]. Optics Express, 2010, 18(25): 26399~26408.
    [40] Gente R, Jansen C, Geise R, et al.. Scaled bistatic radar cross section measurements of aircraft with a fiber-coupled THz time-domain spectrometer[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(4): 424-431.
    [41] Born M and Wolf E. Principles of Optics[M]. Cambridge: Cambridge University Press, 1999: 633-644.
    [42] 黄培康,殷红成,许小剑.雷达目标特性[M]. 北京, 电子工业出社, 2005: 71-72.
    [43] Huang Pei-kang, Yin Hong-cheng, and Xu Xiao-jian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 71-72.
    [44] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京, 电子工业出版社, 2005: 6-18.
    [45] Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technology[M]. Beijing, Publishing House of Electronics Industry, 2005: 6-18.
    [46] 张麟兮, 胡楚峰. 雷达目标散射特性测试与成像诊断[M]. 北京: 中国宇航出版社, 2009: 100-120.
    [47] Zhang Lin-xi, and Hu Chu-feng. Measurement and Imaging of Radar Target Scattering Characteristics[M]. Beijing: China Astronautic Publishing House. 2009: 100-120.
    [48] Walker J L. Range-Doppler imaging of rotating objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 23-52.
    [49] Liang Da-chuan, Wei Ming-gui, Gu Jian-qiang, et al.. Broad-band time domain terahertz radar cross-section research in scale models[J]. Acta Physica Sinica 2014, 63(21): 214102.
    [50] Mensa D L. High resolution Radar Cross-Section Imaging[M]. Boston: Artech House Inc, 1981: 85-115.
  • [1] 刘峻峰刘硕傅晓建崔铁军 . 太赫兹信息超材料与超表面. 雷达学报, 2018, 7(1): 46-55. doi: 10.12000/JR17100
    [2] 王宏强邓彬秦玉亮 . 太赫兹雷达技术. 雷达学报, 2018, 7(1): 1-21. doi: 10.12000/JR17107
    [3] 陈硕罗成高邓彬秦玉亮王宏强庄钊文 . 太赫兹孔径编码成像分辨性能研究. 雷达学报, 2018, 7(1): 127-138. doi: 10.12000/JR17089
    [4] 喻洋皮亦鸣 . 太赫兹高分辨率雷达杂波测量与分析. 雷达学报, 2015, 4(2): 217-221. doi: 10.12000/JR14123
    [5] 吴洋白杨殷红成张良聪 . 基于微波倍频源太赫兹频段雷达散射截面测量. 雷达学报, 2018, 7(1): 147-152. doi: 10.12000/JR17099
    [6] 梁福来李浩楠祁富贵安强王健琪 . UWB MIMO生物雷达多静止人体目标成像方法研究. 雷达学报, 2016, 5(5): 470-476. doi: 10.12000/JR16096
    [7] 庄旭昇汪玲高瑾池冰清 . 一种基于WiFi信号的运动目标无源雷达成像方法. 雷达学报, 2014, 3(6): 694-701. doi: 10.12000/JR14120
    [8] 赵逸超朱宇涛粟毅杨猛 . 用于线阵三维SAR成像的二维快速ESPRIT算法. 雷达学报, 2015, 4(5): 591-599. doi: 10.12000/JR15065
    [9] 刘小明俞俊生陈晓东周俊甘露张持建 . 针对太赫兹波段介电参数测量的宽带准光系统. 雷达学报, 2018, 7(1): 56-66. doi: 10.12000/JR17110
    [10] 李世超侯培培屈俭郝丛静贾渠李刚李超 . 基于波导缝隙阵列的新型太赫兹频率扫描天线. 雷达学报, 2018, 7(1): 119-126. doi: 10.12000/JR17098
    [11] 牟媛吴振森赵豪武光玲 . 粗糙金属和介质目标的太赫兹散射特性分析. 雷达学报, 2018, 7(1): 83-90. doi: 10.12000/JR17094
    [12] 赵华郭立新 . 分形粗糙表面涂覆目标太赫兹散射特性. 雷达学报, 2018, 7(1): 91-96. doi: 10.12000/JR17091
    [13] 胡银富冯进军 . 用于雷达的新型真空电子器件. 雷达学报, 2016, 5(4): 350-360. doi: 10.12000/JR16078
    [14] 田卫明曾涛胡程 . 基于导航信号的BiSAR 成像技术. 雷达学报, 2013, 2(1): 39-45. doi: 10.3724/SP.J.1300.2012.20092
    [15] 王岩飞李和平韩松 . 雷达脉冲编码理论方法及应用. 雷达学报, 2019, 8(1): 1-16. doi: 10.12000/JR19023
    [16] 丁昊刘宁波董云龙陈小龙关键 . 雷达海杂波测量试验回顾与展望. 雷达学报, 0, (): 1-22. doi: 10.12000/JR19006
    [17] 王福来庞晨李永祯王雪松 . 一种同时全极化雷达正交多相编码波形设计方法. 雷达学报, 2017, 6(4): 340-348. doi: 10.12000/JR16150
    [18] 王俊郑彤雷鹏魏少明 . 深度学习在雷达中的研究综述. 雷达学报, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [19] 李尚远肖雪迪郑小平 . 基于微波光子学的分布式相参孔径雷达. 雷达学报, 2019, 8(2): 178-188. doi: 10.12000/JR19024
    [20] 韩壮志宋春吉侯建强 . 伪码族复合连续波信号的多分辨率特性分析. 雷达学报, 2016, 5(3): 278-283. doi: 10.12000/JR15100
  • 加载中
计量
  • 文章访问数:  1116
  • HTML浏览量:  839
  • PDF下载量:  1247
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-02
  • 录用日期:  2015-01-30
  • 刊出日期:  2015-04-28

太赫兹时域雷达成像研究

    通讯作者: 谷建强, gjq@tju.edu.cn
  • 1.  (天津大学精密仪器与光电子工程学院 天津 300072)
  • 2.  (光电信息技术教育部重点实验室 天津 300072)
  • 3.  (电子科技大学电子工程学院 成都 611731)
基金项目:  国家重点基础研究发展计划(2014CB339800),国家自然科学基金(61107053, 61138001), 国家重大科学仪器设备开发专项(2011YQ150021)资助课题

摘要: 该文在太赫兹时域雷达基础上,通过改进后的后向投影(BP)算法对多种模型进行了系统的成像研究,验证了散射太赫兹时域信号的成像机制.成像结果显示实验实现了分辨6mm的空间间隔;同时理论计算证明太赫兹时域雷达具有0.125mm的横向和0.125mm的纵向分辨率潜力.该文还对后向投影算法所产生的环形中心增强现象进行了分析讨论,并讨论了成像背景圆环的原因与抑制方法.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回