当期目录

2019年  8卷  第5期
雷达探测与成像前沿技术专题
认知雷达通过借鉴蝙蝠的认知学习过程,感知战场环境信息并反馈至发射机,从而实现自适应探测和处理,是未来雷达智能化发展的重点方向。其中如何充分利用目标与环境先验信息,设计雷达波形以提高目标检测、跟踪以及抗干扰等性能是认知雷达发展的难点和重点。该文针对不同干扰环境、目标模型、天线配置(如:单发单收(SISO)和多发多收(MIMO))等的波形设计关键要素及主要思路进行了总结梳理,并从不同干扰与目标知识的利用角度,对近几年代表性的认知波形设计文献进行介绍和归纳,旨在为以后的研究提供参考和依据。 认知雷达通过借鉴蝙蝠的认知学习过程,感知战场环境信息并反馈至发射机,从而实现自适应探测和处理,是未来雷达智能化发展的重点方向。其中如何充分利用目标与环境先验信息,设计雷达波形以提高目标检测、跟踪以及抗干扰等性能是认知雷达发展的难点和重点。该文针对不同干扰环境、目标模型、天线配置(如:单发单收(SISO)和多发多收(MIMO))等的波形设计关键要素及主要思路进行了总结梳理,并从不同干扰与目标知识的利用角度,对近几年代表性的认知波形设计文献进行介绍和归纳,旨在为以后的研究提供参考和依据。
阵列信号处理是雷达领域各类应用的核心技术之一。近年来,互质阵列的提出打破了传统方法受限于奈奎斯特采样速率这一瓶颈,其稀疏布设的阵列结构和互质欠采样的信号处理方式大幅降低了系统所需的软硬件开销,为当前不断提升的实际应用需求提供了理论基础和技术前提。鉴于其在自由度、分辨率及计算复杂度等方面的性能优势,互质阵列信号处理的理论和技术研究受到了国内外学者的广泛关注。该文分别从波达方向估计和自适应波束成形这两个阵列信号处理领域的基本问题出发,介绍了互质阵列信号处理方向的研究进展。在互质阵列波达方向估计方面,该文总结了互质子阵分解方法和虚拟阵列信号处理方法等两类典型技术路线,并以此为基础介绍了压缩感知和无网格化技术在低复杂度和超分辨估计等方面的最新研究工作。在互质阵列波束成形方面,该文剖析了其与互质阵列波达方向估计问题的区别与联系,并介绍了面向互质阵列的高效鲁棒自适应波束成形设计方法。该文旨在通过对互质阵列信号处理研究前沿的分类归纳和总结,探讨各类方法的优势和未来的研究方向,为其在雷达等领域的产业需求和实际应用提供理论和技术参考。 阵列信号处理是雷达领域各类应用的核心技术之一。近年来,互质阵列的提出打破了传统方法受限于奈奎斯特采样速率这一瓶颈,其稀疏布设的阵列结构和互质欠采样的信号处理方式大幅降低了系统所需的软硬件开销,为当前不断提升的实际应用需求提供了理论基础和技术前提。鉴于其在自由度、分辨率及计算复杂度等方面的性能优势,互质阵列信号处理的理论和技术研究受到了国内外学者的广泛关注。该文分别从波达方向估计和自适应波束成形这两个阵列信号处理领域的基本问题出发,介绍了互质阵列信号处理方向的研究进展。在互质阵列波达方向估计方面,该文总结了互质子阵分解方法和虚拟阵列信号处理方法等两类典型技术路线,并以此为基础介绍了压缩感知和无网格化技术在低复杂度和超分辨估计等方面的最新研究工作。在互质阵列波束成形方面,该文剖析了其与互质阵列波达方向估计问题的区别与联系,并介绍了面向互质阵列的高效鲁棒自适应波束成形设计方法。该文旨在通过对互质阵列信号处理研究前沿的分类归纳和总结,探讨各类方法的优势和未来的研究方向,为其在雷达等领域的产业需求和实际应用提供理论和技术参考。
主动式毫米波阵列3维成像系统是人体安检成像系统的研究热点,该文对主动式毫米波阵列3维系统工作模式、信号模型和成像算法进行了介绍,并将深度学习中的卷积神经网络(CNN)热图检测方法和边框回归检测技术应用于人体安检成像异物检测。研究表明,基于热图的检测方法和基于YOLO的检测方法均可实现异物检测。基于热图的检测方法网络结构简单、易训练,但由于需要遍历整幅待检测图像,运算时间长,且生成的检测框尺寸固定,无法适应异物尺寸变化。基于YOLO的检测算法网络结构复杂、训练耗时长,但该方法在检测速度与检测框精度上优势明显,更利于机场安检等对实时性要求较高的检测应用。 主动式毫米波阵列3维成像系统是人体安检成像系统的研究热点,该文对主动式毫米波阵列3维系统工作模式、信号模型和成像算法进行了介绍,并将深度学习中的卷积神经网络(CNN)热图检测方法和边框回归检测技术应用于人体安检成像异物检测。研究表明,基于热图的检测方法和基于YOLO的检测方法均可实现异物检测。基于热图的检测方法网络结构简单、易训练,但由于需要遍历整幅待检测图像,运算时间长,且生成的检测框尺寸固定,无法适应异物尺寸变化。基于YOLO的检测算法网络结构复杂、训练耗时长,但该方法在检测速度与检测框精度上优势明显,更利于机场安检等对实时性要求较高的检测应用。
针对雷达高分辨距离像(HRRP)目标识别问题,传统方法只考虑样本的包络信息而忽略了距离单元间的时序相关性,该文提出了一种基于注意力机制的双向自循环神经网络模型。该模型将时域的HRRP数据通过滑窗分为正反两个序列,并将其分别通过两个相互独立的GRU网络进行特征提取,然后将同时刻提取到的特征进行拼接,从而利用了距离像双向的时序信息。考虑到不同时刻的序列对目标分类的重要性不同,通过注意力机制自适应地对各时刻隐层特征赋予不同的权值,最后根据加权求和后的隐层特征进行目标的识别与分类。实测数据实验结果表明,该文所提方法可以有效完成高分辨距离像的目标识别问题,并且在数据发生一定的时序偏移情况下,仍然可以准确找到目标区域。 针对雷达高分辨距离像(HRRP)目标识别问题,传统方法只考虑样本的包络信息而忽略了距离单元间的时序相关性,该文提出了一种基于注意力机制的双向自循环神经网络模型。该模型将时域的HRRP数据通过滑窗分为正反两个序列,并将其分别通过两个相互独立的GRU网络进行特征提取,然后将同时刻提取到的特征进行拼接,从而利用了距离像双向的时序信息。考虑到不同时刻的序列对目标分类的重要性不同,通过注意力机制自适应地对各时刻隐层特征赋予不同的权值,最后根据加权求和后的隐层特征进行目标的识别与分类。实测数据实验结果表明,该文所提方法可以有效完成高分辨距离像的目标识别问题,并且在数据发生一定的时序偏移情况下,仍然可以准确找到目标区域。
害虫迁飞具有规模大、突发性强的特点,会导致病虫害异地大爆发,粮食产量下降,造成重大的经济损失。昆虫雷达是监测迁飞性害虫的一种有效手段。昆虫目标的雷达散射截面积(RCS)较小,回波能量弱,在保证高检测率的同时会带来高虚警率问题,进而导致在目标跟踪的数据关联环节,易受虚假量测的影响出现关联错误。幅度特征辅助跟踪算法利用目标与噪声点迹的幅度差异,可以有效提高目标与噪声的识别度,改善跟踪性能,但是其需要已知目标的RCS起伏模型作为先验信息来计算幅度似然比。因此,该文基于Ku波段高分辨昆虫雷达外场实测昆虫回波数据,分析了昆虫目标的RCS起伏特性,得出Gamma分布可以较好地拟合昆虫目标的RCS统计分布,并将其作为先验信息,推导出Gamma起伏目标在高斯白噪声背景下的幅度似然比。通过在不同信噪比、不同量测噪声及不同起伏模型参数下的仿真结果及性能指标分析,验证了相比于概率数据互联滤波算法(PDAF)算法,目标RCS特征辅助的跟踪算法可以有效提高昆虫目标的跟踪精度。 害虫迁飞具有规模大、突发性强的特点,会导致病虫害异地大爆发,粮食产量下降,造成重大的经济损失。昆虫雷达是监测迁飞性害虫的一种有效手段。昆虫目标的雷达散射截面积(RCS)较小,回波能量弱,在保证高检测率的同时会带来高虚警率问题,进而导致在目标跟踪的数据关联环节,易受虚假量测的影响出现关联错误。幅度特征辅助跟踪算法利用目标与噪声点迹的幅度差异,可以有效提高目标与噪声的识别度,改善跟踪性能,但是其需要已知目标的RCS起伏模型作为先验信息来计算幅度似然比。因此,该文基于Ku波段高分辨昆虫雷达外场实测昆虫回波数据,分析了昆虫目标的RCS起伏特性,得出Gamma分布可以较好地拟合昆虫目标的RCS统计分布,并将其作为先验信息,推导出Gamma起伏目标在高斯白噪声背景下的幅度似然比。通过在不同信噪比、不同量测噪声及不同起伏模型参数下的仿真结果及性能指标分析,验证了相比于概率数据互联滤波算法(PDAF)算法,目标RCS特征辅助的跟踪算法可以有效提高昆虫目标的跟踪精度。
利用属性散射中心(ASC)参数估计来识别目标上的散射结构是实现合成孔径雷达(SAR)自动目标体识别(ATR)的重要步骤。为提高属性散射中心参数估计的速度并抑制杂散影响,该文首先从图像中提取多个属性散射中心,然后分别估计各个属性散射中心的参数。为提高单个属性散射中心的参数估计速率,考虑到其幅度和相位相关参数可分离,该文提出幅度相位分离的属性散射中心参数估计思想,与传统方法相比,该思想使参数估计算法复杂度和参数估计时间降低了1个数量级。引入迭代半阈值(IHT)算法提高参数估计精度。根据各个属性散射中心的参数估计结果可识别目标上各种散射结构并确定其在目标上的位置分布。仿真数据、实测数据以及MSTAR数据集得到的参数估计的高效性和高准确性,验证了该文所提方法的有效性。 利用属性散射中心(ASC)参数估计来识别目标上的散射结构是实现合成孔径雷达(SAR)自动目标体识别(ATR)的重要步骤。为提高属性散射中心参数估计的速度并抑制杂散影响,该文首先从图像中提取多个属性散射中心,然后分别估计各个属性散射中心的参数。为提高单个属性散射中心的参数估计速率,考虑到其幅度和相位相关参数可分离,该文提出幅度相位分离的属性散射中心参数估计思想,与传统方法相比,该思想使参数估计算法复杂度和参数估计时间降低了1个数量级。引入迭代半阈值(IHT)算法提高参数估计精度。根据各个属性散射中心的参数估计结果可识别目标上各种散射结构并确定其在目标上的位置分布。仿真数据、实测数据以及MSTAR数据集得到的参数估计的高效性和高准确性,验证了该文所提方法的有效性。
在方位多通道合成孔径雷达(SAR)系统中,进行非均匀采样重建之前,由于通道特性不一致导致的幅度相位差异必须进行校正,以避免图像中出现“鬼影”虚假目标,影响图像判读。方位多通道SAR工作过程中,平台偏航和俯仰导致的通道相位失配具有方位时变和距离空变特点。目前基于平台姿态信息的通道相位失配校正方法均未考虑地形高程起伏带来的影响。该文提出一种新的方位多通道SAR相位失配校正方法,基于辅助数字高程模型(DEM)信息和平台姿态信息,获得更加精确的场景下视角,在地形起伏较大的场景显著提高了通道间相位失配估计精度。针对提出的算法,开展仿真实验,针对虚假目标抑制效果开展定量评估。同时选取场景高程起伏较大场景开展了机载飞行试验数据处理,并对实验结果进行分析,验证算法的有效性。 在方位多通道合成孔径雷达(SAR)系统中,进行非均匀采样重建之前,由于通道特性不一致导致的幅度相位差异必须进行校正,以避免图像中出现“鬼影”虚假目标,影响图像判读。方位多通道SAR工作过程中,平台偏航和俯仰导致的通道相位失配具有方位时变和距离空变特点。目前基于平台姿态信息的通道相位失配校正方法均未考虑地形高程起伏带来的影响。该文提出一种新的方位多通道SAR相位失配校正方法,基于辅助数字高程模型(DEM)信息和平台姿态信息,获得更加精确的场景下视角,在地形起伏较大的场景显著提高了通道间相位失配估计精度。针对提出的算法,开展仿真实验,针对虚假目标抑制效果开展定量评估。同时选取场景高程起伏较大场景开展了机载飞行试验数据处理,并对实验结果进行分析,验证算法的有效性。
基于导航卫星的干涉SAR(GNSS-InSAR)使用在轨导航卫星作为照射源,近地面部署接收机,利用导航卫星的星座特性以及重轨特性,可实现区域性的连续观测。对于场景1维/3维形变反演而言,需要连续时间的数据采集,由于导航卫星并非严格意义上的重轨,且重轨时间具有不确定性,原始数据冗余度高,数据对齐时截取量大,数据有效性低。该文针对GNSS-InSAR场景数据采集时间精确性问题,提出了一种重轨数据采集优化模型,该方法通过实际轨迹与TLE预测轨迹相结合的方式,通过空间相干系数的滑窗轨迹对齐,以获取相邻天导航卫星重轨时间间隔,实现精确的GNSS-InSAR数据采集,在降低原始数据冗余度下,保证数据的有效合成孔径时间。实测数据表明所提方法的有效性。 基于导航卫星的干涉SAR(GNSS-InSAR)使用在轨导航卫星作为照射源,近地面部署接收机,利用导航卫星的星座特性以及重轨特性,可实现区域性的连续观测。对于场景1维/3维形变反演而言,需要连续时间的数据采集,由于导航卫星并非严格意义上的重轨,且重轨时间具有不确定性,原始数据冗余度高,数据对齐时截取量大,数据有效性低。该文针对GNSS-InSAR场景数据采集时间精确性问题,提出了一种重轨数据采集优化模型,该方法通过实际轨迹与TLE预测轨迹相结合的方式,通过空间相干系数的滑窗轨迹对齐,以获取相邻天导航卫星重轨时间间隔,实现精确的GNSS-InSAR数据采集,在降低原始数据冗余度下,保证数据的有效合成孔径时间。实测数据表明所提方法的有效性。
综 述
涡旋电磁波,因携带有轨道角动量(OAM),从而体现出除了传统的强度、相位、频率、极化等自由度之外的一种新型自由度,理论上在任意频率下都具有无穷多种互不干扰的正交模态,并且近年来其在雷达成像、无线通信等研究领域展现出重要的应用潜力,所以引起国内外学者的广泛关注,具有很高的研究价值和应用前景。在这里,该文主要介绍近年来涡旋电磁波天线技术的研究进展,包括单一微带贴片天线、阵列天线、行波天线、以及超表面天线结构等。单一微带贴片天线由于其结构简单、制作成本低而被广泛运用;行波天线可以在宽带范围内产生多OAM模式的涡旋电磁波;阵列天线的设计原理简单,可以灵活地控制产生不同模态的高增益OAM电磁波;而超表面天线不需要复杂的馈电网络,从而具有天线整体剖面较低的优势。该文对这4种常见的涡旋电磁波天线进行了总结,并展望了未来的发展趋势。 涡旋电磁波,因携带有轨道角动量(OAM),从而体现出除了传统的强度、相位、频率、极化等自由度之外的一种新型自由度,理论上在任意频率下都具有无穷多种互不干扰的正交模态,并且近年来其在雷达成像、无线通信等研究领域展现出重要的应用潜力,所以引起国内外学者的广泛关注,具有很高的研究价值和应用前景。在这里,该文主要介绍近年来涡旋电磁波天线技术的研究进展,包括单一微带贴片天线、阵列天线、行波天线、以及超表面天线结构等。单一微带贴片天线由于其结构简单、制作成本低而被广泛运用;行波天线可以在宽带范围内产生多OAM模式的涡旋电磁波;阵列天线的设计原理简单,可以灵活地控制产生不同模态的高增益OAM电磁波;而超表面天线不需要复杂的馈电网络,从而具有天线整体剖面较低的优势。该文对这4种常见的涡旋电磁波天线进行了总结,并展望了未来的发展趋势。
针对雷达对海上目标探测技术研究的数据需求以及目前公开的雷达对海探测数据缺乏的问题,该文提出一项“雷达对海探测数据共享计划”,旨在利用X波段固态全相参雷达等多型雷达开展对海探测试验,获取不同海况、分辨率、擦地角条件下目标和海杂波数据,并同步获取海洋气象水文数据、目标位置与轨迹的真实数据,实现雷达实测数据的标准化、规范化管理,推进数据集公开共享,服务于海杂波特性研究,有力地支持海杂波抑制和目标检测技术研究。 针对雷达对海上目标探测技术研究的数据需求以及目前公开的雷达对海探测数据缺乏的问题,该文提出一项“雷达对海探测数据共享计划”,旨在利用X波段固态全相参雷达等多型雷达开展对海探测试验,获取不同海况、分辨率、擦地角条件下目标和海杂波数据,并同步获取海洋气象水文数据、目标位置与轨迹的真实数据,实现雷达实测数据的标准化、规范化管理,推进数据集公开共享,服务于海杂波特性研究,有力地支持海杂波抑制和目标检测技术研究。