[1] SHERMAN S M and BARTON D K. Monopulse Principles and Techniques[M]. Norwood, MA: Artech House, 2011: 1–18.
[2] HOWARD D D. Radar target glint in tracking and guidance system based on echo signal phase distortion[J]. Proceedings of NEC, 1959, 15: 840–849.
[3] LINDSAY J E. Angular glint and the moving, rotating, complex radar target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1968, AES-4(2): 164–173. doi:  10.1109/TAES.1968.5408954
[4] DUNN H H and HOWARD D D. Radar target amplitude, angle, and Doppler scintillation from analysis of the echo signal propagating in space[J]. IEEE Transactions on Microwave Theory and Techniques, 1968, 16(9): 715–728. doi:  10.1109/TMTT.1968.1126776
[5] KAJENSKI P J. Comparison of two theories of angle glint: Polarization considerations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 206–210. doi:  10.1109/TAES.2006.1603415
[6] YIN Hongcheng and HUANG Peikang. Unification and comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 778–783. doi:  10.1109/7.381924
[7] YIN Hongcheng and HUANG Peikang. Further comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 372–380. doi:  10.1109/TAES.2008.4517012
[8] SHERMAN S M. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(1): 160–170. doi:  10.1109/TAES.1971.310264
[9] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Extended analysis of retrodirective cross-eye jamming[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2803–2806. doi:  10.1109/TAP.2009.2027353
[10] HARWOOD N M, DAWBER W N, KING D J, et al. Multiple-element crosseye[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 67–73. doi:  10.1049/iet-rsn:20060042
[11] 殷红成, 王超, 黄培康. 雷达目标角闪烁三种表示的内在联系(英文)[J]. 雷达学报, 2014, 3(2): 119–128. doi:  10.3724/SP.J.1300.2014.14025

YIN Hongcheng, WANG Chao, and HUANG Peikang. Inherent relations among the three representations of radar target angular glint[J]. Journal of Radars, 2014, 3(2): 119–128. doi:  10.3724/SP.J.1300.2014.14025
[12] MONAKOV A. Physical and statistical properties of the complex monopulse ratio[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 960–968. doi:  10.1109/TAES.2013.6494392
[13] SHARENSON S. Angle estimation accuracy with a monopulse radar in the search mode[J]. IRE Transactions on Aerospace and Navigational Electronics, 1962, ANE-9(3): 175–179. doi:  10.1109/TANE3.1962.4201876
[14] KANTER I. Multiple Gaussian targets: The track-on-jam problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(6): 620–623. doi:  10.1109/TAES.1977.308502
[15] KANTER I. Corrections to " multiple Gaussian targets: The track-on-jam problem”[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(3): 544. doi:  10.1109/TAES.1978.308619
[16] KANTER I. Varieties of average monopulse responses to multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(1): 25–28. doi:  10.1109/TAES.1981.309032
[17] KANTER I. The probability density function of the monopulse ratio for n looks at a combination of constant and Rayleigh targets[J]. IEEE Transactions on Information Theory, 1977, 23(5): 643–648. doi:  10.1109/TIT.1977.1055778
[18] ASSEO S J. Effect of monopulse signal thresholding on tracking multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(4): 504–509. doi:  10.1109/TAES.1974.307805
[19] ASSEO S J. Corrections to " detection of target multiplicity using monopulse quadrature angle”[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(6): 466–468. doi:  10.1109/TAES.1981.309077
[20] TULLSSON B E. Monopulse tracking of Rayleigh targets: A simple approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(3): 520–531. doi:  10.1109/7.81434
[21] GROVES G W, BLAIR W D, and CHOW W C. Probability distribution of complex monopulse ratio with arbitrary correlation between channels[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1345–1350. doi:  10.1109/7.625136
[22] SEIFER A D. Monopulse-radar angle tracking in noise or noise jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 622–638. doi:  10.1109/7.256285
[23] BLAIR W D and BRANDT-PEARCE M. Unresolved Rayleigh target detection using monopulse measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 543–552. doi:  10.1109/7.670335
[24] SINHA A, KIRUBARAJAN T, and BAR-SHALOM Y. Maximum likelihood angle extractor for two closely spaced targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 183–203. doi:  10.1109/7.993239
[25] NICKEL U. Performance of corrected adaptive monopulse estimation[J]. IEE Proceedings - Radar, Sonar and Navigation, 1999, 146(1): 17–24. doi:  10.1049/ip-rsn:19990257
[26] NICKEL U. Overview of generalized monopulse estimation[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(6): 27–56. doi:  10.1109/MAES.2006.1662039
[27] NICKEL U R O, CHAUMETTE E, and LARZABAL P. Statistical performance prediction of generalized monopulse estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 381–404. doi:  10.1109/TAES.2011.5705682
[28] CHAUMETTE E, NICKEL U, and LARZABAL P. Detection and parameter estimation of extended targets using the generalized monopulse estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3389–3417. doi:  10.1109/TAES.2012.6324719
[29] NICKEL U, CHAUMETTE E, and LARZABAL P. Estimation of extended targets using the generalized monopulse estimator: Extension to a mixed target model[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2084–2096. doi:  10.1109/TAES.2013.6558043
[30] DU PLESSIS W P. Platform skin return and retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 490–501. doi:  10.1109/TAES.2012.6129650
[31] DU PLESSIS W P. Cross-eye gain in multiloop retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 875–882. doi:  10.1109/TAES.2016.140112
[32] LIU Tianpeng, LIAO Dongping, and WEI Xizhang. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1867–1876. doi:  10.1109/TAES.2015.140035
[33] LIU Tianpeng, LIU Zhen, LIAO Dongping, et al. Platform skin return and multiple-element linear retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 821–835. doi:  10.1109/TAES.2016.140949
[34] MA Jiazhi, SHI Longfei, CUI Gang, et al. Further analysis of retrodirective cross-eye jamming: Polarization considerations[C]. Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi:  10.1049/cp.2018.1252.
[35] GLASS J D and BLAIR W D. Detection of Rayleigh targets using adjacent matched filter samples[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1927–1941. doi:  10.1109/TAES.2015.140683
[36] GLASS J D, BLAIR W D, and LANTERMAN A D. Joint-bin monopulse processing of Rayleigh targets[J]. IEEE Transactions on Signal Processing, 2015, 63(24): 6673–6683. doi:  10.1109/TSP.2015.2478749
[37] BLAIR W D and BRANDT-PEARCE M. Monopulse DOA estimation of two unresolved Rayleigh targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 452–469. doi:  10.1109/7.937461
[38] ZHANG Xin, WILLETT P K, and BAR-SHALOM Y. Monopulse radar detection and localization of multiple unresolved targets via joint bin processing[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1225–1236. doi:  10.1109/TSP.2005.843732
[39] ZHANG Xin, WILLETT P, and BAR-SHALOM Y. Detection and localization of multiple unresolved extended targets via monopulse radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 455–472. doi:  10.1109/TAES.2009.5089534
[40] WILLETT P, BLAIR W D, and ZHANG Xin. The multitarget monopulse CRLB for matched filter samples[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4183–4197. doi:  10.1109/TSP.2007.894405
[41] ISAAC A, WILLETT P, and BAR-SHALOM Y. MCMC methods for tracking two closely spaced targets using monopulse radar channel signals[J]. IET Radar, Sonar & Navigation, 2007, 1(3): 221–229. doi:  10.1049/iet-rsn:20060117
[42] NANDAKUMARAN N, SINHA A, and KIRUBARAJAN T. Joint detection and tracking of unresolved targets with monopulse radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1326–1341. doi:  10.1109/TAES.2008.4667712
[43] LEE S P, CHO B L, LEE S M, et al. Unambiguous angle estimation of unresolved targets in monopulse radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1170–1177. doi:  10.1109/TAES.2014.140178
[44] ZHENG Yibin, TSENG S M, and YU K B. Closed-form four-channel monopulse two-target resolution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1083–1089. doi:  10.1109/TAES.2003.1238760
[45] CROUSE D F, NICKEL U, and WILLETT P. Comments on " closed-form four-channel monopulse two-target resolution”[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 913–916. doi:  10.1109/TAES.2012.6129678
[46] JARDAK S, AHMED S, and ALOUINI M S. Generalised two target localisation using passive monopulse radar[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 932–936. doi:  10.1049/iet-rsn.2016.0495
[47] MA Jiazhi, SHI Longfei, and LIU Jian. Improved two-targets resolution using dual-polarization radar with interlaced subarray partition[C]. Proceedings of the 13th IEEE International Conference on Electronic Measurement & Instruments, Yangzhou, China, 2017: 397–400. doi:  10.1109/ICEMI.2017.8265831.
[48] 戴幻尧, 王建路, 韩慧, 等. 基于对角差信号的单脉冲雷达二维角估计新方法[J]. 现代雷达, 2017, 39(1): 22–25, 31. doi:  10.16592/j.cnki.1004-7859.2017.01.005

DAI Huanyao, WANG Jianlu, HAN Hui, et al. Two dimension DOA estimation method of monopulse radar based on diagonal difference channel signal[J]. Modern Radar, 2017, 39(1): 22–25, 31. doi:  10.16592/j.cnki.1004-7859.2017.01.005
[49] 徐振海, 肖顺平, 熊子源. 阵列雷达低角跟踪技术[M]. 北京: 科学出版社, 2014.

XU Zhenhai, XIAO Shunping, and XIONG Ziyuan. Low Angle Tracking Techniques for Array Radars[M]. Beijing: Science Press, 2014.
[50] WHITE W D. Low-angle radar tracking in the presence of multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 835–852. doi:  10.1109/TAES.1974.307892
[51] WHITE W D. Double null technique for low angle tracking[J]. Microwave Journal, 1976, 19(12): 35–38, 60.
[52] 徐振海, 熊子源, 宋聃, 等. 阵列雷达双零点单脉冲低角跟踪算法[J]. 国防科技大学学报, 2015, 37(1): 130–135. doi:  10.11887/j.cn.201501022

XU Zhenhai, XIONG Ziyuan, SONG Dan, et al. Double-null monopulse low-angle tracking algorithm with array radars[J]. Journal of National University of Defense Technology, 2015, 37(1): 130–135. doi:  10.11887/j.cn.201501022
[53] SEBT M A, SHEIKHI A, and NAYEBI M M. Robust low-angle estimation by an array radar[J]. IET Radar, Sonar & Navigation, 2010, 4(6): 780–790. doi:  10.1049/iet-rsn.2009.0067
[54] XU Zhenhai, XIONG Ziyuan, WU Jiani, et al. Symmetrical difference pattern monopulse for low-angle tracking with array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2676–2684. doi:  10.1109/TAES.2016.140436
[55] 赵英俊, 李荣锋, 王永良, 等. 基于主瓣多径干扰抑制的米波雷达测角方法[J]. 华中科技大学学报(自然科学版), 2013, 41(4): 51–55. doi:  10.13245/j.husst.2013.04.014

ZHAO Yingjun, LI Rongfeng, WANG Yongliang, et al. Angles measurement of meter-wave radars by mainlobe multipath jamming suppression[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(4): 51–55. doi:  10.13245/j.husst.2013.04.014
[56] PARK D, YANG E, AHN S, et al. Adaptive beamforming for low-angle target tracking under multipath interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2564–2577. doi:  10.1109/TAES.2014.130185
[57] 朱伟, 陈伯孝. 强相干干扰下微弱信号波达方向估计[J]. 电波科学学报, 2013, 28(2): 212–219. doi:  10.13443/j.cjors.2013.02.019

ZHU Wei and CHEN Baixiao. Weak signal DOA estimation under coherent intensive interferences[J]. Chinese Journal of Radio Science, 2013, 28(2): 212–219. doi:  10.13443/j.cjors.2013.02.019
[58] DARVISHI H and SEBT M A. Adaptive hybrid method for low-angle target tracking in multipath[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 931–937. doi:  10.1049/iet-rsn.2018.5114
[59] SHANG She, ZHANG Shouhong, and ZHANG Xiushe. Investigation on low-angle tracking technique for HRR radar[C]. Proceedings of 2001 CIE International Conference on Radar Proceedings, Beijing, China, 2001: 839–842. doi:  10.1109/ICR.2001.984842.
[60] HU Jingyuan, ZHAO Guoqiang, and SUN Houjun. A dual polarization multi-layer array antenna used by digital system[C]. Proceedings of 2015 Asia-Pacific Microwave Conference, Nanjing, China, 2015, 3: 1–3. doi:  10.1109/APMC.2015.7413305.
[61] LI Teng, MENG Hongfu, and DOU Wenbin. Design and implementation of dual-frequency dual-polarization slotted waveguide antenna array for Ka-band application[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1317–1320. doi:  10.1109/LAWP.2014.2337355
[62] HASANI H, PEIXEIRO C, SKRIVERVIK A K, et al. Single-layer quad-band printed reflectarray antenna with dual linear polarization[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5522–5528. doi:  10.1109/TAP.2015.2481918
[63] NERI F. Introduction to Electronic Defense Systems[M]. Boston, MA: Artech House, 2001.
[64] MANGULIS V. Frequency diversity in low-angle radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(1): 149–153. doi:  10.1109/TAES.1981.309050
[65] BOSSE E, TURNER R M, and RISEBOROUGH E S. Model-based multifrequency array signal processing for low-angle tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 194–210. doi:  10.1109/7.366303
[66] ZHOU Jie, WANG Jianming, and XING Wenge. Study on low-angle tracking technique for shipboard phased array radar[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi:  10.1109/ICR.2006.343591.
[67] ZHANG Y D, LI Xin, and AMIN G M. Target localization in multipath environment through the exploitation of multi-frequency array[C]. Proceedings of 2010 International Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 206–210. doi:  10.1109/WDD.2010.5592512.
[68] ZHU Yutang, ZHAO Yongbo, and SHUI Penglang. Low-angle target tracking using frequency-agile refined maximum likelihood algorithm[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 491–497. doi:  10.1049/iet-rsn.2016.0301
[69] BLAIR W D, GROVES G W, BAR-SHALOM Y, et al. Frequency agility and fusion for tracking targets in the presence of multipath propagation[C]. Proceedings of 1994 IEEE National Radar Conference, Atlanta, GA, USA, 1994: 166–170. doi:  10.1109/NRC.1994.328118.
[70] 施龙飞. 雷达极化抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2007.

SHI Longfei. Study on the suppression of interference with radar polarization information[D]. [Ph.D. dissertation], National University of Defense Technology, 2007.
[71] KWAK H, YANG E, and CHUN H. Vector sensor arrays in DOA estimation for the low angle tracking[C]. Proceedings of 2007 International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 183–187. doi:  10.1109/WDDC.2007.4339406.
[72] 施龙飞, 王雪松, 肖顺平. 低空镜像角闪烁的极化抑制[J]. 电波科学学报, 2008, 23(6): 1038–1044. doi:  10.3969/j.issn.1005-0388.2008.06.005

SHI Longfei, WANG Xuesong, and XIAO Shunping. Depressing of angle glint of low-altitude enantiomorphous target by polarization diversity[J]. Chinese Journal of Radio Science, 2008, 23(6): 1038–1044. doi:  10.3969/j.issn.1005-0388.2008.06.005
[73] 宋志勇, 肖怀铁, 祝依龙, 等. 基于扩展单脉冲比的拖曳式诱饵存在性检测[J]. 航空学报, 2011, 32(9): 1656–1668.

SONG Zhiyong, XIAO Huaitie, ZHU Yilong, et al. Detection of presence of towed radar active decoy based on extended monopulse ratio[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1656–1668.
[74] 王建路, 戴幻尧, 韩慧, 等. 雷达导引头对拖曳式诱饵干扰的检测和识别新方法[J]. 航天电子对抗, 2016, 32(6): 5–8, 28. doi:  10.16328/j.htdz8511.2016.06.002

WANG Jianlu, DAI Huanyao, HAN Hui, et al. A new method for detection and recognition of towed decoy jamming by radar seeker[J]. Aerospace Electronic Warfare, 2016, 32(6): 5–8, 28. doi:  10.16328/j.htdz8511.2016.06.002
[75] 李永祯, 胡万秋, 孙豆, 等. 一种基于极化信息的机载拖曳式诱饵存在性检测与抑制方法研究[J]. 雷达学报, 2016, 5(6): 666–672. doi:  10.12000/JR16115

LI Yongzhen, HU Wanqiu, SUN Dou, et al. Scheme for polarization detection and suppression of TRAD[J]. Journal of Radars, 2016, 5(6): 666–672. doi:  10.12000/JR16115
[76] 李永祯, 胡万秋, 程旭, 等. 相干两点源角欺骗干扰的极化鉴别方法研究[J]. 兵工学报, 2013, 34(9): 1078–1083. doi:  10.3969/j.issn.1000-1093.2013.09.004

LI Yongzhen, HU Wanqiu, CHENG Xu, et al. Research on polarization discrimination algorithm for coherent dual-source angle deception interference[J]. Acta Armamentarii, 2013, 34(9): 1078–1083. doi:  10.3969/j.issn.1000-1093.2013.09.004
[77] 宗志伟, 李永祯, 施龙飞, 等. 全极化雷达相干两点源角度欺骗干扰识别方法[J]. 电波科学学报, 2014, 29(4): 621–626. doi:  10.13443/j.cjors.2013071201

ZONG Zhiwei, LI Yongzhen, SHI Longfei, et al. Discrimination method for coherent dual point sources angular deception using fully polarimetric radar[J]. Chinese Journal of Radio Science, 2014, 29(4): 621–626. doi:  10.13443/j.cjors.2013071201
[78] 马佳智. 极化雷达导引头多点源参数估计与抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2017.

MA Jiazhi. Study on multi-sources parameter estimation and jamming mitigation for polarimetric radar seeker[D]. [Ph.D. dissertation], National University of Defense Technology, 2017.
[79] 施龙飞, 毛楚乔, 张建明, 等. 基于极化-空间谱特征的雷达目标检测方法[J]. 雷达科学与技术, 2018, 16(2): 174–180. doi:  10.3969/j.issn.1672-2337.2018.02.010

SHI Longfei, MAO Chuqiao, ZHANG Jianming, et al. A target detection method based on polarization-space joint spectrum characteristic[J]. Radar Science and Technology, 2018, 16(2): 174–180. doi:  10.3969/j.issn.1672-2337.2018.02.010
[80] 胥文泉, 施龙飞, 肖顺平. 基于相位分集的目标极化特征检测方法[J]. 雷达科学与技术, 2018, 16(3): 275–280, 285. doi:  10.3969/j.issn.1672-2337.2018.03.007

XU Wenquan, SHI Longfei, and XIAO Shunping. A target detection method with polarization characteristic based on phase diversity[J]. Radar Science and Technology, 2018, 16(3): 275–280, 285. doi:  10.3969/j.issn.1672-2337.2018.03.007
[81] GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi:  10.1109/TSP.2007.909326
[82] 卢龙云, 李明, 陈洪猛, 等. 基于奇异谱分析的抗数字射频存储距离波门拖引干扰[J]. 电子与信息学报, 2016, 38(3): 600–606. doi:  10.11999/JEIT150550

LU Longyun, LI Ming, CHEN Hongmeng, et al. Countering DRFM range gate pull-off jamming based on singular spectrum analysis[J]. Journal of Electronics &Information Technology, 2016, 38(3): 600–606. doi:  10.11999/JEIT150550
[83] ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1300. doi:  10.1109/TAES.2013.6494414
[84] 李永祯. 瞬态极化统计特性及处理的研究[D]. [博士论文], 国防科学技术大学, 2004.

LI Yongzhen. Study on statistical characteristics and processing of instantaneous polarization[D]. [Ph.D. dissertation], National University of Defense Technology, 2004.
[85] 王涛. 弹道中段目标极化域特征提取与识别[D]. [博士论文], 国防科学技术大学, 2006.

WANG Tao. Feature extraction and recognition of targets in ballistic midcourse in polarization-domain[D]. [Ph.D. dissertation], National University of Defense Technology, 2006.
[86] SHI Longfei, WANG Xuesong, and XIAO Shunping. Polarization discrimination between repeater false-target and radar target[J]. Science in China Series F: Information Sciences, 2009, 52(1): 149–158. doi:  10.1007/s11432-009-0009-9
[87] ZONG Zhiwei, SHI Longfei, and WANG Xuesong. Commonality used to discriminate active repetition false targets based on polarisation characteristics of antenna[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1178–1185. doi:  10.1049/iet-rsn.2015.0421
[88] 宗志伟. 弹道中段目标极化雷达识别方法[D]. [博士论文], 国防科学技术大学, 2016.

ZONG Zhiwei. Discrimination methods for ballistic targets base on polarization radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2016.
[89] 沈允春, 谢俊好, 刘庆普. 识别箔条云新方案[J]. 系统工程与电子技术, 1995(4): 60–63. doi:  10.3321/j.issn:1001-506X.1995.04.011

SHEN Yunchun, XIE Junhao, and LIU Qingpu. A novel scheme for identifying chaff interference[J]. Systems Engineering and Electronics, 1995(4): 60–63. doi:  10.3321/j.issn:1001-506X.1995.04.011
[90] 刘庆普, 沈允春. 箔条云极化识别方案性能分析[J]. 系统工程与电子技术, 1996(11): 1–7. doi:  10.3321/j.issn:1001-506X.1996.11.001

LIU Qingpu and SHEN Yunchun. Performance analysis of identifying chaff interference using polarization characteristics[J]. Systems Engineering and Electronics, 1996(11): 1–7. doi:  10.3321/j.issn:1001-506X.1996.11.001
[91] 李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科学技术大学, 2010.

LI Jinliang. Study on characteristics of chaff jamming and anti-chaff technology for radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010.
[92] 朱珍珍, 汤广富, 程翥, 等. 基于极化分解的舰船和角反射器鉴别方法[J]. 舰船电子对抗, 2010, 33(6): 15–21. doi:  10.3969/j.issn.1673-9167.2010.06.003

ZHU Zhenzhen, TANG Guangfu, CHENG Zhu, et al. Discrimination method of ship and corner reflector based on polarization decomposition[J]. Shipboard Electronic Countermeasure, 2010, 33(6): 15–21. doi:  10.3969/j.issn.1673-9167.2010.06.003
[93] YU K B and MURROW D J. Adaptive digital beamforming for angle estimation in jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 508–523. doi:  10.1109/7.937465
[94] 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi:  10.12000/JR16039

WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi:  10.12000/JR16039
[95] 施龙飞, 任博, 马佳智, 等. 雷达极化抗干扰技术进展[J]. 现代雷达, 2016, 38(4): 1–7, 29. doi:  10.16592/j.cnki.1004-7859.2016.04.001

SHI Longfei, REN Bo, MA Jiazhi, et al. Recent developments of radar anti-interference techniques with polarimetry[J]. Modern Radar, 2016, 38(4): 1–7, 29. doi:  10.16592/j.cnki.1004-7859.2016.04.001
[96] 胡航. 现代相控阵雷达阵列处理技术[M]. 北京: 国防工业出版社, 2017.

HU Hang. Array Processing Techniques for Modern Phased Array Radar[M]. Beijing: National Defense Industry Press, 2017.
[97] 邱朝阳, 雷丽丽, 胡航, 等. 子阵级相控阵差波束旁瓣抑制新方法[J]. 电波科学学报, 2011, 26(1): 13–17, 202. doi:  10.3969/j.issn.1005-0388.2011.01.003

QIU Chaoyang, LEI Lili, HU Hang, et al. Novel approach of sidelobe suppression for difference beam of phased array at subarray level[J]. Chinese Journal of Radio Science, 2011, 26(1): 13–17, 202. doi:  10.3969/j.issn.1005-0388.2011.01.003
[98] 李荣锋, 饶灿, 戴凌燕, 等. 子阵间约束自适应和差单脉冲测角算法[J]. 华中科技大学学报(自然科学版), 2013, 41(9): 6–10. doi:  10.13245/j.hust.2013.09.013

LI Rongfeng, RAO Can, DAI Lingyan, et al. Algorithm for constrained adaptive sum-difference monopulse among sub-arrays[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(9): 6–10. doi:  10.13245/j.hust.2013.09.013
[99] CHEN Xinzhu, SHU Ting, YU K B, et al. Enhanced ADBF architecture for monopulse angle estimation in multiple jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2684–2687. doi:  10.1109/LAWP.2017.2740958
[100] CHENG Ziyang, HE Zishu, DUAN Xiang, et al. Adaptive monopulse approach with joint linear constraints for planar array at subarray level[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1432–1441. doi:  10.1109/TAES.2018.2793318
[101] 周必雷, 李荣锋, 戴凌燕, 等. 和差四通道及辅助阵元联合自适应单脉冲方法[J]. 系统工程与电子技术, 2017, 39(9): 1905–1914. doi:  10.3969/j.issn.1001-506X.2017.09.01

ZHOU Bilei, LI Rongfeng, DAI Lingyan, et al. Adaptive monopulse algorithm combining four-channel sum-difference beam and auxiliary elements[J]. Systems Engineering and Electronics, 2017, 39(9): 1905–1914. doi:  10.3969/j.issn.1001-506X.2017.09.01
[102] 陈功, 谢文冲, 王永良. 基于空时联合约束的机载雷达STAP单脉冲角度估计方法[J]. 电子学报, 2015, 43(3): 489–495. doi:  10.3969/j.issn.0372-2112.2015.03.011

CHEN Gong, XIE Wenchong, and WANG Yongliang. Space-time adaptive monopulse angle estimation approach for airborne radar based on space-time joint constraint[J]. Acta Electronica Sinica, 2015, 43(3): 489–495. doi:  10.3969/j.issn.0372-2112.2015.03.011
[103] 刘义, 赵志超, 王雪松, 等. 反辐射导弹复合测角抗诱偏干扰方法[J]. 宇航学报, 2009, 30(5): 2122–2127. doi:  10.3873/j.issn.1000-1328.2009.05.063

LIU Yi, ZHAO Zhichao, WANG Xuesong, et al. Approach of anti-decoy based on complex angle measuring system[J]. Journal of Astronautics, 2009, 30(5): 2122–2127. doi:  10.3873/j.issn.1000-1328.2009.05.063
[104] 宋立众, 乔晓林, 孟宪德. 一种单脉冲雷达中的极化估值与滤波算法[J]. 系统工程与电子技术, 2005, 27(5): 764–766. doi:  10.3321/j.issn:1001-506X.2005.05.002

SONG Lizhong, QIAO Xiaolin, and MENG Xiande. Algorithm of polarization estimation and filtering for mono-pulse radar[J]. Systems Engineering and Electronics, 2005, 27(5): 764–766. doi:  10.3321/j.issn:1001-506X.2005.05.002
[105] MA Jiazhi, SHI Longfei, LI Yongzhen, et al. Angle estimation of extended targets in main-lobe interference with polarization filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 169–189. doi:  10.1109/TAES.2017.2649783
[106] MA Jiazhi, SHI Longfei, LI Yongzhen, et al. Angle estimation with polarization filtering: A single snapshot approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 257–268. doi:  10.1109/TAES.2017.2756218
[107] YANG Yong, XIAO Shunping, FENG Dejun, et al. Polarisation oblique projection for radar seeker tracking in chaff centroid jamming environment without prior knowledge[J]. IET Radar, Sonar & Navigation, 2014, 8(9): 1195–1202. doi:  10.1049/iet-rsn.2013.0388
[108] 王文涛, 张剑云, 李小波, 等. Fast ICA应用于雷达抗主瓣干扰算法研究[J]. 信号处理, 2015, 31(4): 497–503. doi:  10.3969/j.issn.1003-0530.2015.04.016

WANG Wentao, ZHANG Jianyun, LI Xiaobo, et al. A study on radar mainlobe jamming suppression algorithm based on fast ICA[J]. Journal of Signal Processing, 2015, 31(4): 497–503. doi:  10.3969/j.issn.1003-0530.2015.04.016
[109] 温媛媛, 陈豪. 基于时域卷积盲信号分离的雷达干扰抑制算法[J]. 中国科学院大学学报, 2013, 30(4): 523–527. doi:  10.7523/j.issn.2095-6134.2013.04.014

WEN Yuanyuan and CHEN Hao. Algorithm of radar interference suppression based on blind signal separation in the time domain[J]. Journal of University of Chinese Academy of Sciences, 2013, 30(4): 523–527. doi:  10.7523/j.issn.2095-6134.2013.04.014
[110] WASHIZAWA Y, YAMASHITA Y, TANAKA T, et al. Blind extraction of global signal from multi-channel noisy observations[J]. IEEE Transactions on Neural Networks, 2010, 21(9): 1472–1481. doi:  10.1109/TNN.2010.2052828
[111] 王瑜, 李小波, 周青松, 等. 联合BSS和FRFT的雷达抗主瓣干扰新方法[J]. 现代雷达, 2016, 38(7): 72–77. doi:  10.16592/j.cnki.1004-7859.2016.07.018

WANG Yu, LI Xiaobo, ZHOU Qingsong, et al. A new method of radar main lobe interference based on the combination of BSS and FRFT[J]. Modern Radar, 2016, 38(7): 72–77. doi:  10.16592/j.cnki.1004-7859.2016.07.018
[112] LI Jiong, ZHANG Hang, and ZHANG Jiang. Fast adaptive BSS algorithm for independent/dependent sources[J]. IEEE Communications Letters, 2016, 20(11): 2221–2224. doi:  10.1109/LCOMM.2016.2598144
[113] 周必雷, 李荣锋, 陈风波, 等. 基于盲分离的空时联合处理抗复合干扰方法[J]. 系统工程与电子技术, 2018, 40(11): 2393–2402. doi:  10.3969/j.issn.1001-506X.2018.11.01

ZHOU Bilei, LI Rongfeng, CHEN Fengbo, et al. Space-time complex-jamming suppression algorithm based on the BSS[J]. Systems Engineering and Electronics, 2018, 40(11): 2393–2402. doi:  10.3969/j.issn.1001-506X.2018.11.01
[114] LEE S H, LEE S J, CHOI I O, et al. ICA-based phase-comparison monopulse technique for accurate angle estimation of multiple targets[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 323–331. doi:  10.1049/iet-rsn.2017.0156
[115] 周伟江, 王培强, 张进, 等. 雷达射频掩护信号分析及对抗方法研究[J]. 航天电子对抗, 2013, 29(5): 47–50. doi:  10.3969/j.issn.1673-2421.2013.05.014

ZHOU Weijiang, WANG Peiqiang, ZHANG Jin, et al. Analysis and countermeasures of radar radio frequency-screen signal[J]. Aerospace Electronic Warfare, 2013, 29(5): 47–50. doi:  10.3969/j.issn.1673-2421.2013.05.014
[116] 金珊珊, 王春阳, 邱程, 等. 对抗应答式干扰的射频掩护脉冲设计[J]. 中国电子科学研究院学报, 2014, 9(4): 377–381. doi:  10.3969/j.issn.1673-5692.2014.04.010

JIN Shanshan, WANG Chunyang, QIU Cheng, et al. Design of RF protecting signal for transponder jamming suppression[J]. Journal of CSEIT, 2014, 9(4): 377–381. doi:  10.3969/j.issn.1673-5692.2014.04.010
[117] 李凤从. 雷达抗干扰波形优化设计的研究[D]. [博士论文], 哈尔滨工业大学, 2014.

LI Fengcong. Research on anti-interference waveform optimization for radar[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2014.
[118] MA Jiazhi, SHI Longfei, XIAO Shunping, et al. Mitigation of cross-eye jamming using a dual-polarization array[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 491–498. doi:  10.21629/JSEE.2018.03.06
[119] 白渭雄, 唐宏, 陶建峰. 拖曳式诱饵对单脉冲雷达的干扰分析[J]. 电子信息对抗技术, 2007, 22(6): 39–42. doi:  10.3969/j.issn.1674-2230.2007.06.010

BAI Weixiong, TANG Hong, and TAO Jianfeng. Analysis of towed decoy jamming on monopulse radar[J]. Electronic Information Warfare Technology, 2007, 22(6): 39–42. doi:  10.3969/j.issn.1674-2230.2007.06.010
[120] 廖云, 何松华, 张军. 脉冲多普勒雷达抗拖曳式干扰方法研究[J]. 雷达科学与技术, 2009, 7(5): 325–328. doi:  10.3969/j.issn.1672-2337.2009.05.001

LIAO Yun, HE Songhua, and ZHANG Jun. Method research on mono-pulse Doppler radar countering towed decoy jamming[J]. Radar Science and Technology, 2009, 7(5): 325–328. doi:  10.3969/j.issn.1672-2337.2009.05.001
[121] YANG Yong, FENG Dejun, ZHANG Wenming, et al. Detection of chaff centroid jamming aided by GPS/INS[J]. IET Radar, Sonar & Navigation, 2013, 7(2): 130–142. doi:  10.1049/iet-rsn.2012.0101
[122] 徐娟, 姚如贵, 陈赟, 等. 频域空时域级联导航抗干扰技术研究[J]. 弹箭与制导学报, 2015, 35(2): 137–141. doi:  10.15892/j.cnki.djzdxb.2015.02.035

XU Juan, YAO Rugui, CHEN Yun, et al. Cascaded frequency and spatial-time domain anti-jamming technique in navigation systems[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2015, 35(2): 137–141. doi:  10.15892/j.cnki.djzdxb.2015.02.035
[123] WANG LUO Shengbin, XU Zhenhai, LIU Xinghua, et al. Subarray-based frequency diverse array for target range-angle localization with monopulse processing[J]. IEEE Sensors Journal, 2018, 18(14): 5937–5947. doi:  10.1109/JSEN.2018.2844280
[124] 龙杰. 单脉冲前斜SAR成像信息处理技术研究[D]. [博士论文], 北京理工大学, 2014.

LONG Jie. Research on monopulse squint SAR imaging information processing technique[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2014.