优先发表
More
相位波前受轨道角动量调制的涡旋电磁波,在雷达前视成像领域得到广泛关注和研究。基于涡旋电磁波雷达成像原理和方法,该文重点对方位分辨力展开研究。首先,分析了贝塞尔幅度项对方位分辨性能的影响,结果表明,在贝塞尔幅度窗影响下,涡旋电磁波雷达方位分辨性能由有效OAM模态范围决定。其次,提出了一种有效OAM模态范围计算方法,并分别对方位角分辨率、空间分辨率以及超实孔径雷达分辨率进行了表征。最后,仿真分析了方位基本分辨性能随不同影响因素的变化规律,改变波长孔径比、成像俯仰角,能增大有效OAM模态范围,提升方位分辨性能。拟合得到了有效OAM模态范围、超实孔径雷达分辨率关于波长孔径比和成像俯仰角的近似表达式,为涡旋电磁波雷达参数设计与优化提供参考。 相位波前受轨道角动量调制的涡旋电磁波,在雷达前视成像领域得到广泛关注和研究。基于涡旋电磁波雷达成像原理和方法,该文重点对方位分辨力展开研究。首先,分析了贝塞尔幅度项对方位分辨性能的影响,结果表明,在贝塞尔幅度窗影响下,涡旋电磁波雷达方位分辨性能由有效OAM模态范围决定。其次,提出了一种有效OAM模态范围计算方法,并分别对方位角分辨率、空间分辨率以及超实孔径雷达分辨率进行了表征。最后,仿真分析了方位基本分辨性能随不同影响因素的变化规律,改变波长孔径比、成像俯仰角,能增大有效OAM模态范围,提升方位分辨性能。拟合得到了有效OAM模态范围、超实孔径雷达分辨率关于波长孔径比和成像俯仰角的近似表达式,为涡旋电磁波雷达参数设计与优化提供参考。
中段弹道目标会发生释放弹头、抛洒诱饵等多种形式的目标分离事件。在目标分离的前期,多目标之间距离较近,存在电磁耦合现象,诱发目标雷达散射截面积、极化等维度的电磁特征变化。准确地捕获这些变化就能辅助雷达进行资源调度,提高预警雷达对弹道目标的跟踪和识别能力。该文对中段弹道目标3种分离方式的动态散射特性进行了深入分析,在此基础上提出了可以判断目标分离事件发生的特征量,促进弹道目标行为辨识的发展。 中段弹道目标会发生释放弹头、抛洒诱饵等多种形式的目标分离事件。在目标分离的前期,多目标之间距离较近,存在电磁耦合现象,诱发目标雷达散射截面积、极化等维度的电磁特征变化。准确地捕获这些变化就能辅助雷达进行资源调度,提高预警雷达对弹道目标的跟踪和识别能力。该文对中段弹道目标3种分离方式的动态散射特性进行了深入分析,在此基础上提出了可以判断目标分离事件发生的特征量,促进弹道目标行为辨识的发展。
目前深度学习技术在SAR图像的船舶检测中已取得显著的成果,但针对SAR船舶图像中复杂多变的背景环境,如何准确高效地提取目标特征,提升检测精度与检测速度仍存在着巨大的挑战。针对上述问题,该文提出了一种多尺度特征融合与特征通道关系校准的 SAR 图像船舶检测算法。在Faster R-CNN的基础上,首先通过引入通道注意力机制对特征提取网络进行特征间通道关系校准,提高网络对复杂场景下船舶目标特征提取的表达能力;其次,不同于原始的基于单一尺度特征生成候选区域的方法,该文基于神经架构搜索算法引入改进的特征金字塔结构,高效地将多尺度特征进行充分融合,改善了船舶目标中对小目标、近岸密集目标的漏检问题。最后,在SSDD数据集上进行对比验证。实验结果表明,相较原始的Faster R-CNN,检测精度从85.4%提高到89.4%,检测速率也从2.8 FPS提高到10.7 FPS。该方法能够有效实现高速与高精度的SAR图像船舶检测,具有一定的现实意义。 目前深度学习技术在SAR图像的船舶检测中已取得显著的成果,但针对SAR船舶图像中复杂多变的背景环境,如何准确高效地提取目标特征,提升检测精度与检测速度仍存在着巨大的挑战。针对上述问题,该文提出了一种多尺度特征融合与特征通道关系校准的 SAR 图像船舶检测算法。在Faster R-CNN的基础上,首先通过引入通道注意力机制对特征提取网络进行特征间通道关系校准,提高网络对复杂场景下船舶目标特征提取的表达能力;其次,不同于原始的基于单一尺度特征生成候选区域的方法,该文基于神经架构搜索算法引入改进的特征金字塔结构,高效地将多尺度特征进行充分融合,改善了船舶目标中对小目标、近岸密集目标的漏检问题。最后,在SSDD数据集上进行对比验证。实验结果表明,相较原始的Faster R-CNN,检测精度从85.4%提高到89.4%,检测速率也从2.8 FPS提高到10.7 FPS。该方法能够有效实现高速与高精度的SAR图像船舶检测,具有一定的现实意义。
近年来,以卷积神经网络为代表的深度识别模型取得重要突破,不断刷新光学和SAR图像场景分类、目标检测、语义分割与变化检测等多项任务性能水平。然而深度识别模型以统计学习为主要特征,依赖大规模高质量训练数据,只能提供有限的可靠性能保证。深度卷积神经网络图像识别模型很容易被视觉不可感知的微小对抗扰动欺骗,给其在医疗、安防、自动驾驶和军事等安全敏感领域的广泛部署带来巨大隐患。该文首先从信息安全角度分析了基于深度卷积神经网络的图像识别系统潜在安全风险,并重点讨论了投毒攻击和逃避攻击特性及对抗脆弱性成因;其次给出了对抗鲁棒性的基本定义,分别建立对抗学习攻击与防御敌手模型,系统总结了对抗样本攻击、主被动对抗防御、对抗鲁棒性评估技术的研究进展,并结合SAR图像目标识别对抗攻击实例分析了典型方法特性;最后结合团队研究工作,指出存在的开放性问题,为提升深度卷积神经网络图像识别模型在开放、动态、对抗环境中的鲁棒性提供参考。 近年来,以卷积神经网络为代表的深度识别模型取得重要突破,不断刷新光学和SAR图像场景分类、目标检测、语义分割与变化检测等多项任务性能水平。然而深度识别模型以统计学习为主要特征,依赖大规模高质量训练数据,只能提供有限的可靠性能保证。深度卷积神经网络图像识别模型很容易被视觉不可感知的微小对抗扰动欺骗,给其在医疗、安防、自动驾驶和军事等安全敏感领域的广泛部署带来巨大隐患。该文首先从信息安全角度分析了基于深度卷积神经网络的图像识别系统潜在安全风险,并重点讨论了投毒攻击和逃避攻击特性及对抗脆弱性成因;其次给出了对抗鲁棒性的基本定义,分别建立对抗学习攻击与防御敌手模型,系统总结了对抗样本攻击、主被动对抗防御、对抗鲁棒性评估技术的研究进展,并结合SAR图像目标识别对抗攻击实例分析了典型方法特性;最后结合团队研究工作,指出存在的开放性问题,为提升深度卷积神经网络图像识别模型在开放、动态、对抗环境中的鲁棒性提供参考。
机载合成孔径雷达(SAR)定位误差不仅受载机位置/速度测量误差、系统时间误差等的影响,还与运动补偿残余误差有关。然而现有机载SAR定位模型很少考虑运动补偿误差的影响。该文针对实际中普遍存在的含运动误差和载机航迹测量误差的情况,结合运动补偿和频域成像算法,推导了机载SAR图像定位误差传递模型,阐明了运动补偿残余误差影响下航迹测量误差对定位偏差的影响方式,并基于该模型给出了载机航迹测量误差的标定方法。仿真实验验证了该定位误差传递模型的正确性,相比于不考虑运动补偿残余误差的定位模型,得到了更高精度的航迹测量误差标定结果,证明了该方法的优越性。 机载合成孔径雷达(SAR)定位误差不仅受载机位置/速度测量误差、系统时间误差等的影响,还与运动补偿残余误差有关。然而现有机载SAR定位模型很少考虑运动补偿误差的影响。该文针对实际中普遍存在的含运动误差和载机航迹测量误差的情况,结合运动补偿和频域成像算法,推导了机载SAR图像定位误差传递模型,阐明了运动补偿残余误差影响下航迹测量误差对定位偏差的影响方式,并基于该模型给出了载机航迹测量误差的标定方法。仿真实验验证了该定位误差传递模型的正确性,相比于不考虑运动补偿残余误差的定位模型,得到了更高精度的航迹测量误差标定结果,证明了该方法的优越性。
基于多传感器融合感知是实现汽车智能驾驶的关键技术之一,已成为智能驾驶领域的热点问题。然而,由于毫米波雷达分辨率有限,且易受噪声、杂波、多径等因素的干扰,激光雷达易受天气的影响,现有的融合算法很难实现这两种传感器数据的精确融合,得到鲁棒的结果。针对智能驾驶中准确鲁棒的感知问题,该文提出了一种融合毫米波雷达和激光雷达鲁棒的感知算法。使用基于特征的两步配准的空间校正新方法,实现了三维激光点云和二维毫米波雷达点云精确的空间同步。使用改进的毫米波雷达滤波算法,减少了噪声、多径等对毫米波雷达点云的影响。然后根据该文提出的新颖的融合方法对两种传感器的数据进行融合,得到准确鲁棒的感知结果,解决了烟雾对激光性能影响的问题。最后,通过实际场景的实验测试,验证了该文算法的有效性和鲁棒性,即使在烟雾等极端环境中仍然能够实现准确和鲁棒的感知。使用该文融合方法建立的环境地图更加精确,得到的定位结果比使用单一传感器的定位误差减少了至少50%。 基于多传感器融合感知是实现汽车智能驾驶的关键技术之一,已成为智能驾驶领域的热点问题。然而,由于毫米波雷达分辨率有限,且易受噪声、杂波、多径等因素的干扰,激光雷达易受天气的影响,现有的融合算法很难实现这两种传感器数据的精确融合,得到鲁棒的结果。针对智能驾驶中准确鲁棒的感知问题,该文提出了一种融合毫米波雷达和激光雷达鲁棒的感知算法。使用基于特征的两步配准的空间校正新方法,实现了三维激光点云和二维毫米波雷达点云精确的空间同步。使用改进的毫米波雷达滤波算法,减少了噪声、多径等对毫米波雷达点云的影响。然后根据该文提出的新颖的融合方法对两种传感器的数据进行融合,得到准确鲁棒的感知结果,解决了烟雾对激光性能影响的问题。最后,通过实际场景的实验测试,验证了该文算法的有效性和鲁棒性,即使在烟雾等极端环境中仍然能够实现准确和鲁棒的感知。使用该文融合方法建立的环境地图更加精确,得到的定位结果比使用单一传感器的定位误差减少了至少50%。
当期目录
More
综述
智能电磁感知是电磁探测与成像的系统化和智能化延伸,是安全检查、生物医学、物联网等领域的基础性、关键性和共性问题。近年来,挖掘利用人工电磁材料和人工智能在电磁波调控与数据信息调控方面的强大能力,将其有机结合,并系统地引入电磁感知领域,发展了低成本、高性能的智能电磁感知体制,为电磁感知的进一步发展提供了关键理论和技术支撑。该文讨论了智能电磁感知的若干最新进展,为读者及时掌握该领域的最新进展提供有益帮助。 智能电磁感知是电磁探测与成像的系统化和智能化延伸,是安全检查、生物医学、物联网等领域的基础性、关键性和共性问题。近年来,挖掘利用人工电磁材料和人工智能在电磁波调控与数据信息调控方面的强大能力,将其有机结合,并系统地引入电磁感知领域,发展了低成本、高性能的智能电磁感知体制,为电磁感知的进一步发展提供了关键理论和技术支撑。该文讨论了智能电磁感知的若干最新进展,为读者及时掌握该领域的最新进展提供有益帮助。
作为超材料的二维形式,梯度超表面由于其超薄结构、灵活的各向同性/异性结构选择和突变相位特性,具有很强的电磁波前操控能力,是目前的研究热点。该文率先提出以激励电磁波的极化元、频率元、角度元、方向元以及出射电磁波的位置元等一元、二元甚至多元信息组合编码的多功能分类方式,详细归类总结了多功能集成超表面的研究进展,获得了多功能集成超表面清晰的研究方案和技术路线。该文对多功能电磁超表面未来可能的发展方向进行了展望,旨在为多功能超表面研究提供新思路,实现更新颖、更复杂和更大容量的集成波前调控和功能器件,促进未来通信和雷达器件的集成与小型化发展。 作为超材料的二维形式,梯度超表面由于其超薄结构、灵活的各向同性/异性结构选择和突变相位特性,具有很强的电磁波前操控能力,是目前的研究热点。该文率先提出以激励电磁波的极化元、频率元、角度元、方向元以及出射电磁波的位置元等一元、二元甚至多元信息组合编码的多功能分类方式,详细归类总结了多功能集成超表面的研究进展,获得了多功能集成超表面清晰的研究方案和技术路线。该文对多功能电磁超表面未来可能的发展方向进行了展望,旨在为多功能超表面研究提供新思路,实现更新颖、更复杂和更大容量的集成波前调控和功能器件,促进未来通信和雷达器件的集成与小型化发展。
可重构电磁超表面是电磁超表面领域广受关注的热点方向。将可控器件/材料引入超表面设计,可重构超表面的电磁调控性能可以实时灵活动态控制。这极大丰富了超表面的功能,有力推动了超表面由理论设计向工程应用突破。近年来该团队持续关注电磁超表面的最新发展,围绕微波频段的可重构超表面,从理论、技术与应用3个层面开展探索研究。该文首先梳理了国内外在该领域的研究历程,然后从可重构超表面对电磁波的幅度、相位和极化特性调控及其应用等方面着手,综述了该团队在该领域的研究成果,并给出对未来工作的展望。 可重构电磁超表面是电磁超表面领域广受关注的热点方向。将可控器件/材料引入超表面设计,可重构超表面的电磁调控性能可以实时灵活动态控制。这极大丰富了超表面的功能,有力推动了超表面由理论设计向工程应用突破。近年来该团队持续关注电磁超表面的最新发展,围绕微波频段的可重构超表面,从理论、技术与应用3个层面开展探索研究。该文首先梳理了国内外在该领域的研究历程,然后从可重构超表面对电磁波的幅度、相位和极化特性调控及其应用等方面着手,综述了该团队在该领域的研究成果,并给出对未来工作的展望。
目前,超材料研究不断向工程化应用推进,在物理机理与效应、设计理论与方法、加工制备与测试等方面取得了突飞猛进的发展。但是,传统的超材料设计主要依赖人工设计和优化,面对大规模的工程化应用设计时,无法实现数量庞大的超材料结构单元的快速整体设计。近几年,涵盖传统启发式算法和神经网络算法的智能算法在超材料设计中所占的比重逐步上升,基于智能算法设计超材料能够打破传统设计方法在不同基材体系、不同频段以及不同性能指标下设计的局限性,展现出快速设计和架构创新的独特优势。该文综述了包括遗传算法、Hopfield网络算法和深度学习在内的几种典型智能算法在超材料设计中的应用,包括正向设计方法和逆向设计方法。基于智能算法能够实现不同性能指标的频率选择表面、多机理复合吸波超材料、平板聚焦超表面以及异常反射超表面的快速设计,为推动超材料技术的工程化应用提供必要设计手段支撑。 目前,超材料研究不断向工程化应用推进,在物理机理与效应、设计理论与方法、加工制备与测试等方面取得了突飞猛进的发展。但是,传统的超材料设计主要依赖人工设计和优化,面对大规模的工程化应用设计时,无法实现数量庞大的超材料结构单元的快速整体设计。近几年,涵盖传统启发式算法和神经网络算法的智能算法在超材料设计中所占的比重逐步上升,基于智能算法设计超材料能够打破传统设计方法在不同基材体系、不同频段以及不同性能指标下设计的局限性,展现出快速设计和架构创新的独特优势。该文综述了包括遗传算法、Hopfield网络算法和深度学习在内的几种典型智能算法在超材料设计中的应用,包括正向设计方法和逆向设计方法。基于智能算法能够实现不同性能指标的频率选择表面、多机理复合吸波超材料、平板聚焦超表面以及异常反射超表面的快速设计,为推动超材料技术的工程化应用提供必要设计手段支撑。
电磁超材料是由亚波长尺寸单元周期或非周期排列组成的人工结构,能对电磁波的频率、幅度、相位和极化等基本物理特征进行调控,突破了传统材料的限制,可实现很多自然界不存在的有趣物理现象及应用。过去二十余年,超材料因其强大的电磁调控能力一直是物理领域的研究热点。但无源超材料在电磁波调控中存在局限性,如工作频率固定、实现功能单一等。所以,可调有源超材料越来越受关注。通过引入有源元器件,超材料的功能可通过外部激励信号进行动态调控,在实际应用中具有重要意义。目前常用的控制方式包括电控、温控、光控和机械控制等,其中光控具有可远程调控、无接触式控制、调制速度快以及结构简单等优点。该文概述了近年来光控电磁超材料的研究进展,从直流、微波、太赫兹和光频段4种不同频段分别介绍现有光控超材料和超表面的工作,重点介绍其工作机制和应用场景,并对这一快速发展领域进行总结和展望。 电磁超材料是由亚波长尺寸单元周期或非周期排列组成的人工结构,能对电磁波的频率、幅度、相位和极化等基本物理特征进行调控,突破了传统材料的限制,可实现很多自然界不存在的有趣物理现象及应用。过去二十余年,超材料因其强大的电磁调控能力一直是物理领域的研究热点。但无源超材料在电磁波调控中存在局限性,如工作频率固定、实现功能单一等。所以,可调有源超材料越来越受关注。通过引入有源元器件,超材料的功能可通过外部激励信号进行动态调控,在实际应用中具有重要意义。目前常用的控制方式包括电控、温控、光控和机械控制等,其中光控具有可远程调控、无接触式控制、调制速度快以及结构简单等优点。该文概述了近年来光控电磁超材料的研究进展,从直流、微波、太赫兹和光频段4种不同频段分别介绍现有光控超材料和超表面的工作,重点介绍其工作机制和应用场景,并对这一快速发展领域进行总结和展望。
论文
通过在超表面单元上加载二极管等有源器件,可编程超表面可实现对电磁波的实时灵活调控。通常利用全波仿真软件计算可编程超表面的辐射场,但该方法需要消耗大量的时间,因而降低了设计效率。为了实现准确高效求解给定编码序列计算辐射场,该文首先设计了辐射场自动测试系统,利用该测试系统实测了少量的编码和辐射场数据,其后提出了一个正向深度神经网络,基于实测的数据训练该神经网络,最终实现了给定编码准确高效预测辐射场。对于给定辐射场求解编码的逆问题,该文提出了一个逆向深度神经网络。基于正向网络生成的数据训练所提出的逆向网络,最终实现了给定辐射场实时准确求解编码。该文所提出的方法为雷达波束形成提供了一种新可选方案,在雷达智能波束形成、微波成像等领域有一定的应用价值。 通过在超表面单元上加载二极管等有源器件,可编程超表面可实现对电磁波的实时灵活调控。通常利用全波仿真软件计算可编程超表面的辐射场,但该方法需要消耗大量的时间,因而降低了设计效率。为了实现准确高效求解给定编码序列计算辐射场,该文首先设计了辐射场自动测试系统,利用该测试系统实测了少量的编码和辐射场数据,其后提出了一个正向深度神经网络,基于实测的数据训练该神经网络,最终实现了给定编码准确高效预测辐射场。对于给定辐射场求解编码的逆问题,该文提出了一个逆向深度神经网络。基于正向网络生成的数据训练所提出的逆向网络,最终实现了给定辐射场实时准确求解编码。该文所提出的方法为雷达波束形成提供了一种新可选方案,在雷达智能波束形成、微波成像等领域有一定的应用价值。
A quasi-Bessel beam is a type of nondiffracted beam commonly used in microwave and optical fields. Although numerous methods have been proposed for quasi-Bessel beam generation, they are valid only in linear systems, indicating that the generation of nonlinear quasi-Bessel beams remains a major challenge. Thus, we propose a new approach to produce quasi-Bessel beams at high-order harmonics based on the time-domain digital-coding metasurface, which is utilized to achieve accurate control of the phase profile at the nonlinear frequencies via proper coding strategies. The effect of phase discretization is also analyzed in detail. The simulation results confirm the validity of the proposed method, which provides a new approach for nonlinear beam manipulation. A quasi-Bessel beam is a type of nondiffracted beam commonly used in microwave and optical fields. Although numerous methods have been proposed for quasi-Bessel beam generation, they are valid only in linear systems, indicating that the generation of nonlinear quasi-Bessel beams remains a major challenge. Thus, we propose a new approach to produce quasi-Bessel beams at high-order harmonics based on the time-domain digital-coding metasurface, which is utilized to achieve accurate control of the phase profile at the nonlinear frequencies via proper coding strategies. The effect of phase discretization is also analyzed in detail. The simulation results confirm the validity of the proposed method, which provides a new approach for nonlinear beam manipulation.
传统的电路模拟吸波材料设计只考虑正入射时的吸波性能,当入射角较大,尤其是大于30°时,雷达吸波器的吸波效果明显恶化。随着现代双站雷达探测技术的发展,雷达探测电磁波可能来自不同的空间方向,这就要求雷达吸波材料不仅在电磁波正入射时具有较高的吸波性能,在斜入射时同样实现良好的隐身特性。为此,该文提出了一种新型的宽带吸波材料。该材料由嵌入集总电阻的导电方环阵列和设计良好的宽角阻抗匹配(WAIM)层组成。由于WAIM层的存在,斜入射情况下的吸波性能明显改善。同时,针对电磁波正斜入射情况,该文提出了准确的等效电路模型以及严格的数学计算模型,使得结构设计清晰明了。测量结果表明,正入射时的吸波带宽达到137.1%。当入射角小于45°时,所设计吸波材料在反射系数衰减至少10 dB情况下的公共百分比吸波带宽达到110.5%。等效电路模型计算、仿真与实测结果之间的相似性验证了该文设计的有效性。 传统的电路模拟吸波材料设计只考虑正入射时的吸波性能,当入射角较大,尤其是大于30°时,雷达吸波器的吸波效果明显恶化。随着现代双站雷达探测技术的发展,雷达探测电磁波可能来自不同的空间方向,这就要求雷达吸波材料不仅在电磁波正入射时具有较高的吸波性能,在斜入射时同样实现良好的隐身特性。为此,该文提出了一种新型的宽带吸波材料。该材料由嵌入集总电阻的导电方环阵列和设计良好的宽角阻抗匹配(WAIM)层组成。由于WAIM层的存在,斜入射情况下的吸波性能明显改善。同时,针对电磁波正斜入射情况,该文提出了准确的等效电路模型以及严格的数学计算模型,使得结构设计清晰明了。测量结果表明,正入射时的吸波带宽达到137.1%。当入射角小于45°时,所设计吸波材料在反射系数衰减至少10 dB情况下的公共百分比吸波带宽达到110.5%。等效电路模型计算、仿真与实测结果之间的相似性验证了该文设计的有效性。
该文将介绍一种W波段相控电磁表面雷达系统。这种工作在92~96 GHz的相控电磁表面天线,仅利用普通的印刷电路板(PCB)加工工艺及加工精度要求,通过合理的单元设计,可以控制掺杂本征材料的二极管(PIN)实现电流翻转,能轻便地、低成本地在W波段保证稳定的180°调相效果。进一步通过输入合适的空间编码,相控电磁表面天线可以形成具有不同指向的波束。这种具有空间波束扫描能力的透射型相控电磁表面天线,用作雷达系统的接收天线。该文提出的W波段相控电磁表面雷达系统及其加工和测试结果,为后续研究精确制导、目标识别、成像等应用提供了基础。 该文将介绍一种W波段相控电磁表面雷达系统。这种工作在92~96 GHz的相控电磁表面天线,仅利用普通的印刷电路板(PCB)加工工艺及加工精度要求,通过合理的单元设计,可以控制掺杂本征材料的二极管(PIN)实现电流翻转,能轻便地、低成本地在W波段保证稳定的180°调相效果。进一步通过输入合适的空间编码,相控电磁表面天线可以形成具有不同指向的波束。这种具有空间波束扫描能力的透射型相控电磁表面天线,用作雷达系统的接收天线。该文提出的W波段相控电磁表面雷达系统及其加工和测试结果,为后续研究精确制导、目标识别、成像等应用提供了基础。
该文深入阐述基于信息超材料的高性能微波计算成像系统架构设计、工作原理与建模分析。首先,利用信息超材料对电磁波优异的调节能力,结合压缩采样理论,重点讨论信息超材料多样杂散波束产生及高性能辐射设计方法。再进一步构建针对高辐射性能信息超材料微波计算成像系统的数值模型,并提出一种高性能色散信息超材料单元,该单元带阻频率捷变特性可覆盖整个X波段。基于该单元设计了一款高透射效率信息超材料透镜,在成像区域内辐射性能较当前超材料孔径提高3倍,辐射效率达到75%。最后基于所构建的数值模型,计算验证所提出的高透射率色散信息超材料透镜对理想散射体的图像还原能力。该文所研究的基于信息超材料的高性能微波计算成像系统,为成像雷达、安防预警、医疗检测等应用提供了坚实的理论依据和前瞻性探索。 该文深入阐述基于信息超材料的高性能微波计算成像系统架构设计、工作原理与建模分析。首先,利用信息超材料对电磁波优异的调节能力,结合压缩采样理论,重点讨论信息超材料多样杂散波束产生及高性能辐射设计方法。再进一步构建针对高辐射性能信息超材料微波计算成像系统的数值模型,并提出一种高性能色散信息超材料单元,该单元带阻频率捷变特性可覆盖整个X波段。基于该单元设计了一款高透射效率信息超材料透镜,在成像区域内辐射性能较当前超材料孔径提高3倍,辐射效率达到75%。最后基于所构建的数值模型,计算验证所提出的高透射率色散信息超材料透镜对理想散射体的图像还原能力。该文所研究的基于信息超材料的高性能微波计算成像系统,为成像雷达、安防预警、医疗检测等应用提供了坚实的理论依据和前瞻性探索。
基于超表面的关联成像系统解决了关联成像系统探测效率低的问题,但其探测模式数量不足导致了其有效成像点数受限。针对这个问题,该文以参考辐射场空间分布1阶统计特征为基础,建立了基于随机调制超表面的关联成像信号模型,分析了成像误差,并与差分关联成像(DCI)方法相结合,给出了具有鲁棒性的基于超表面的关联成像方法,该方法利用不同模式的差分形成了新的探测模式,降低了相关函数的副瓣干扰,从而提升了成像质量。同时,对一种特殊的差分关联成像方法—梯度关联成像(GCI)方法的成像分辨率进行了分析,该方法通过对超表面单元的特殊设计,可以在不获取图像的情况下,直接在成像过程中提取出目标方位向的边缘信息,可以有效提升关联成像系统对目标边缘的提取能力。最后,通过仿真实验验证了该文理论分析的正确性。 基于超表面的关联成像系统解决了关联成像系统探测效率低的问题,但其探测模式数量不足导致了其有效成像点数受限。针对这个问题,该文以参考辐射场空间分布1阶统计特征为基础,建立了基于随机调制超表面的关联成像信号模型,分析了成像误差,并与差分关联成像(DCI)方法相结合,给出了具有鲁棒性的基于超表面的关联成像方法,该方法利用不同模式的差分形成了新的探测模式,降低了相关函数的副瓣干扰,从而提升了成像质量。同时,对一种特殊的差分关联成像方法—梯度关联成像(GCI)方法的成像分辨率进行了分析,该方法通过对超表面单元的特殊设计,可以在不获取图像的情况下,直接在成像过程中提取出目标方位向的边缘信息,可以有效提升关联成像系统对目标边缘的提取能力。最后,通过仿真实验验证了该文理论分析的正确性。
该文提出了一种时变极化编码超构表面的设计方法,实现了对电磁波基波与谐波分布的非线性调控。通过加载开关二极管的方式,超构表面可在2.4 GHz频率处实现转极化与同极化反射之间的动态切换,进而通过调节时域方波调制信号的占空比和频率,可在频域内调控电磁波基波与谐波的能量分配及频率偏移。在此基础上,利用超构表面的动态电磁响应,构建了基于二进制幅度调制方式的超构表面无线通信系统,实现对传输信息的直接调制和实时传输,其中该无线通信系统的最高传输码率可达625 kbps。所有实验结果均与理论计算吻合良好。该文所提出的设计方法在下一代通信、高分辨率成像等实际应用中具有良好的发展前景。 该文提出了一种时变极化编码超构表面的设计方法,实现了对电磁波基波与谐波分布的非线性调控。通过加载开关二极管的方式,超构表面可在2.4 GHz频率处实现转极化与同极化反射之间的动态切换,进而通过调节时域方波调制信号的占空比和频率,可在频域内调控电磁波基波与谐波的能量分配及频率偏移。在此基础上,利用超构表面的动态电磁响应,构建了基于二进制幅度调制方式的超构表面无线通信系统,实现对传输信息的直接调制和实时传输,其中该无线通信系统的最高传输码率可达625 kbps。所有实验结果均与理论计算吻合良好。该文所提出的设计方法在下一代通信、高分辨率成像等实际应用中具有良好的发展前景。
In this paper, we propose the utilization of a programmable metasurface for flexibly manipulating ambient Wi-Fi signals. First, we propose a new and efficient optimization algorithm CWGS (Complex Weighted Gerchberg-Saxton), which is based on an electromagnetic scattering model of the metasurface. The proposed algorithm quickly redesigns the complex amplitude distribution of the Wi-Fi field bounced off the programmable metasurface to enhance the Wi-Fi signals at desired locations significantly. Second, we fabricated a large-scale programmable metasurface that operates at the 2.4 GHz frequency band. We conducted several experiments using the fabricated metasurface to verify the proposed optimization algorithm’s feasibility and effectiveness. Both the theoretical and experimental results show that the programmable metasurface can dynamically boost Wi-Fi signals at multiple locations. Besides, we experimentally verified that using the developed strategy could improve the Wi-Fi signals by 23.5 dB. The results of our work improve the usability and practicality of the programmable metasurface in real-world applications and pave the way for wireless communications, future smart homes, and other applications. In this paper, we propose the utilization of a programmable metasurface for flexibly manipulating ambient Wi-Fi signals. First, we propose a new and efficient optimization algorithm CWGS (Complex Weighted Gerchberg-Saxton), which is based on an electromagnetic scattering model of the metasurface. The proposed algorithm quickly redesigns the complex amplitude distribution of the Wi-Fi field bounced off the programmable metasurface to enhance the Wi-Fi signals at desired locations significantly. Second, we fabricated a large-scale programmable metasurface that operates at the 2.4 GHz frequency band. We conducted several experiments using the fabricated metasurface to verify the proposed optimization algorithm’s feasibility and effectiveness. Both the theoretical and experimental results show that the programmable metasurface can dynamically boost Wi-Fi signals at multiple locations. Besides, we experimentally verified that using the developed strategy could improve the Wi-Fi signals by 23.5 dB. The results of our work improve the usability and practicality of the programmable metasurface in real-world applications and pave the way for wireless communications, future smart homes, and other applications.

微信 | 公众平台

随时查询稿件 获取最新论文 知晓行业信息